
Pyntel4004
Release ENV_VERSION

Andrew Shapton

Jun 28, 2022

CONTENTS

1 Intel 4004 Chip History 3

2 The Intel 4001 Chip 7

3 The Intel 4002 Chip 11

4 The Intel 4003 Chip 15

5 The Intel 4004 Chip 19

6 MCS-4 System Interconnections 27

7 Chip Packaging and characteristics 29

8 MCS-4 chipset hardware characteristics 31

9 Overview of Pyntel4004 47

10 MCS-4 Assembly Language Programming Manual 51

11 Intel 4004 Op-Codes 163

12 The ASCII Table 165

13 Indices and tables 169

i

ii

Pyntel4004, Release ENV_VERSION

CONTENTS 1

Pyntel4004, Release ENV_VERSION

2 CONTENTS

CHAPTER

ONE

INTEL 4004 CHIP HISTORY

In 1969 Busicom contracted Intel to design a set of chips to be used in a new high perfomance calculator. Ted Hoff,
Federico Faggin and Stan Mazor came up with a design that involved four different chips. The CPU was eventually to
be called a microprocessor.

Later Intel negotiated for a return of the rights for the chips, which had gone to Busicom in the original contract.

The 4000 Family (A.K.A. Busicom Chip Set / MCS-4 Chip Set)

The 4000 family consisted of four different chips:

• a 2048-bit ROM with a 4-bit programmable input-output port (4001)

• a 4-registers x 20-locations x 4-bit RAM data memory with a 4-bit output port (4002)

• an input-output expansion chip, consisting of a static shift register with serial input and serial and parallel output
(4003)

• a 4-bit CPU chip (4004)

Other chips in the 4xxx family were:

• an 8-bit address latch for access to standard memory chips, and one built-in 4-bit chip select and I/O port (4008)

• a program and I/O access converter to standard memory and I/O chips (4009)

• an 8192-bit(1024 × 8) ROM w/ 4-bit I/O Ports (4208)

• a general purpose Bye I/O port (4211))

• a keyboard/display interface (4269)

3

Pyntel4004, Release ENV_VERSION

• a memory interface (combined functions of 4008 and 4009)(4289)

• an 8k mask-programming ROM (4308)

• a 16384-bit (2048 × 8) Static ROM (4316)

• a 2048-bit (256 × 8) EPROM (4702)

• a 5.185 MHz Clock Generator Crystal for 4004/4201A or 4040/4201A (4801)

All the chips were packaged in 16-pin, dual-in-line packages. This package restriction was imposed by Intel’s man-
agement, who at the time considered any package with more that 16 pins uneconomical, despite the fact that 40-pin
packages were widely used by other semiconductor companies.

This unfortunate choice considerably constrained the performance of the system. Address and data had to be multi-
plexed onto the pins (one of the claims of Patent number US3821785), causing a major penalty in the instruction
cycle execution.

The instruction cycle of 10.8 microseconds could have been easily reduced to 4 microseconds by a more appropriate
package choice.

The 4000-family was completed by March 1971, in production by June 1971 and introduced to the general market in
November 1971 with the name MCS-4.

1.1 MCS-4

The MCS-4 is a microprogrammable computer set designed for applications such as test systems, peripherals, terminals,
billing machines, measuring machines, numeric and process control.

The 4004 CPU, 4003 Shift Register, and 4002 RAM are standard building blocks. The 4001 ROM contains the custom
microprogram and is implemented as a metal mask according to customer specifications.

MCS-4 systems readily interface to switches, keyboards, displays, teletypewriters, printers, readers, A-D converters
and other popular peripherals.

A system built with the MCS-4 micro computer set can have up to 4k * 8-bit ROM words, 8192 * 4-bit RAM characters,
and 128 I/O lines without requiring any interface logic. By adding a few gates, the MCS-4 can have up to 48 RAM and
ROM packages in any combination, and 192 I/O lines. The minimum configuration consists of one CPU and one 256
* 8-bit ROM.

The MCS-4 has a very powerful instruction set that allows both binary and decimal arithmetic. It includes conditional
branching, jump to subroutine, and provides for the efficient use of ROM look-up tables by indirect fetching.

The Intel MCS-4 micro computer set (4001/2/3/4) is fabricated with Silicon Gate Technology . This low threshold
technology allows the design and production of higher performance MOS circuits and provides a higher functional
density on a monolithic chip than conventional MOS technologies.

4 Chapter 1. Intel 4004 Chip History

https://en.wikipedia.org/wiki/Self-aligned_gate#Development_of_the_silicon-gate_technology_at_Fairchild
https://en.wikipedia.org/wiki/MOSFET#MOS_integrated_circuit_(MOS_IC)

Pyntel4004, Release ENV_VERSION

1.2 Busicom 141-PF

In the case of the Busicom 141-PF (also marketed as the NCR-18-36), the ROM contained the custom microprogram-
ming to allow the MCS-4 chipset to operate as a calculator.

1.2. Busicom 141-PF 5

Pyntel4004, Release ENV_VERSION

6 Chapter 1. Intel 4004 Chip History

CHAPTER

TWO

THE INTEL 4001 CHIP

The Intel 4001 chip was introduced in 1971 as part of the Intel 4000 family; a fully decoded static Random Access
Memory chip, fabricated with P-channel silicon gate MOS technology

It is a 2048-bit metal mask programmable ROM providing custom microprogramming capability for the MCS-4 micro
computer set. It is organised as 256 x 8-bit words.

Logically, the Intel 4001 is set out as shown:

7

https://en.wikipedia.org/wiki/Programmable_logic_device

Pyntel4004, Release ENV_VERSION

The circled numbers relate to the pins as shown below:

Address and data are transferred in and out by time multiplexing on 4 data bus lines. Timing is internally generated
using two clock signals 𝜑 1 and 𝜑 2, and a SYNC signal supplied by the 4004. Addressed are received from the CPU
on three time periods following SYNC, and select 1 out of 256 words and 1 out of 16 ROMs.

For that purpose, each ROM is identified #0, 1, 2, through 15 by metal option. A Command Line (CM) is also provided
and its scope is to select a ROM bank (group of 16 ROM’s).

During the two time periods (M 1 & M 2) following the addressing time, information is transferred from the ROM to
the data bus lines.

A second mode of operation of the ROM is as an Input/output control device. In that mode, a ROM chip will route
information to and from data bus lines in and out of 4 I/O external lines. Each chip has the capability to identify itself
for an I/O port operation, recognise an I/O port instruction and decide whether it is an Input or Output operation and

8 Chapter 2. The Intel 4001 Chip

Pyntel4004, Release ENV_VERSION

execute the instruction.

An external signal (CL) will asynchronously clear the output register during normal operation. All internal flip flops
(including the output register) will be reset when the RESET line goes low (negative voltage).

Each I/O pin can be uniquely chosen as either an input or output port by metal option when ordering. An example
order form can be downloaded here Direct or inverted input or output is optional. An on-chip resistor at the input pins
connected to either V dd or V ss is also optional (see ordering information on page 12).

9

Pyntel4004, Release ENV_VERSION

10 Chapter 2. The Intel 4001 Chip

CHAPTER

THREE

THE INTEL 4002 CHIP

The Intel 4002 chip was introduced in 1971 as part of the Intel 4000 family; a 320-bit MOS RAM and 4-bit output
port, fabricated with P-channel silicon gate MOS technology

The 4002 was designed to be used with other MCS-4/40 devices such as the 4004 CPU. The chip was available in
two different metal options 4002-1 and 4002-2 this was to make it possible to extend the chip selection so that 4pcs of
4002 chips could be connected to the 4004 CPU without any external chip selection logic. Although produced by Intel,
National Semiconductors was the only second source.

Logically, the Intel 4002 is set out as shown:

The circled numbers relate to the pins as shown below:

11

Pyntel4004, Release ENV_VERSION

The 4002 performs two functions. As a RAM, it stores 320 bits arranged in 4 registers of 20 x 4-bit characters each
(16 main memory characters and 4 status characters).

In the RAM mode, the operation is as follows: When the CPU executes an SRC instruction, it will send out the contents
of the designated index register pair during X 2 and X 2 as an address to RAM, and will activate 1 CM-RAM line at X
2 for the previously selected RAM bank (see basic instruction cycle on page 5).

The data at X 2 and X 3 is interpreted as shown below:

12 Chapter 3. The Intel 4002 Chip

Pyntel4004, Release ENV_VERSION

As a vehicle for communication with peripheral devices, it is provided with 4 output lines and associated control logic
to perform output operations.

The status character locations (0 through 3) are selected by the OPA portion of one of the I/O and RAM instructions.

For chip selection, the 4002 is available in two metal options, 4002-1 and 4002-2. An extra pin, P 0, (which may be
hard wired to either V DD or V SS) is also available for chip selection.

The chip number is assigned as follows:

Chip # 4002 Option P 0 D 3 @ X 2 D 2 @ X 2
0 4002-1 GND 0 0
1 4002-1 V DD 0 1
2 4002-2 GND 1 0
3 4002-2 V DD 1 1

Timing is internally generated using two clock signals X 1 and X 2, and a SYNC signal provided by the 4004. Internal
refresh circuitry maintains data levels in the cells.

All communications with the system is through the data bus. The I/O port permits data out of the system. When the
external RESET signal goes low, the memory and all static flip-flops (including the output registers) will be cleared.
To fully clear the memory, the RESET signal must be maintained for at least 32 memory cycles (32 x 8 clock periods).

Note: Previously Selected Ram Bank Bank switching is accomplished by the CPU after receiving a “DCL” (designate
command line) instruction. Prior to the execution of the DCL instruction the desired CM-RAM i code has been stored
in the accumulator (for example, through an LDM instruction). During DCL the CM-RAM 1 code is transferred from
the accumulator to the CM-RAM register. The RAM bank is then selected starting with the next instruction.

13

Pyntel4004, Release ENV_VERSION

14 Chapter 3. The Intel 4002 Chip

CHAPTER

FOUR

THE INTEL 4003 CHIP

The Intel 4003 chip was introduced in 1971 as part of the Intel 4000 family; 10-bit Serial-in/Parallel-out, Serial-out
Shift Register, fabricated with P-channel silicon gate MOS technology.

The 4003 was designed to be used with other MCS-4/40 devices such as the 4004 CPU. Although produced by Intel,
National Semiconductors was the only second source.

Logically, the Intel 4003 is set out as shown:

15

Pyntel4004, Release ENV_VERSION

The circled numbers relate to the pins as shown below:

The 4003 is a 10-bit static shift register with serial-in, parallel-out and serial-out data.

Its function is to increase the number of output lines to interface with I/O devices such as keyboards, displays, printers,
teletypes, switchers, readers, A-D converters, etc.

Data is loaded serially and is available in parallel on 10 output lines which are accessed through enable logic. When
enabled (E = low), the shift register contents is read out; when not enabled (E = high), the parallel-out lines are at V
SS. The serial-out line is not affected by the enable logic.

Data is also available serially permitting an indefinite number of similar devices to be cascaded together to provide
shift register length multiples of 10.

The data shifting is controlled by the CP signal. An internal power-on-clear circuit (Patent number US3821785)

16 Chapter 4. The Intel 4003 Chip

Pyntel4004, Release ENV_VERSION

will clear the shift register (Q i = V SS) between the application of a supply voltage and the first CP signal.

17

Pyntel4004, Release ENV_VERSION

18 Chapter 4. The Intel 4003 Chip

CHAPTER

FIVE

THE INTEL 4004 CHIP

19

Pyntel4004, Release ENV_VERSION

5.1 Instruction Set Format

5.1.1 Machine instructions

The Intel 4004 chip Machine Instructions consist of:

• 1 word instructions - 8 bits requiring 8 clock periods (instruction cycle)

• 2 word instructions - 16 bits requiring 16 clock periods (2 instruction cycles)

Each instruction is divided into two 4 bit fields. The upper 4 bits is the OPR field containing the operation code. The
lower 4 bits is the OPA field containing the modifier.

For 2 word instructions, the second word contains the address information or data.

The upper 4 bits (OPR) will always be fetched befor the lower 4 bits (OPA) during M 1 and M 2 times respectively.

20 Chapter 5. The Intel 4004 Chip

Pyntel4004, Release ENV_VERSION

5.1.2 Input/Output, RAM, and Accumulator Group instructions

In these instructions (which are all 1 word),the OPR contains a 4 bit code which identifies either the I/O instruction or
the accumulator group instruction, and the OPA contains a 4 bit code which identifies the operation to be performed.
The table below illustrates the contents of each 4 bit field:

The Intel 4004 chip was introduced in 1971 as part of the Intel 4000 family; 4-bit central processing unit (CPU),
fabricated with P-channel silicon gate MOS technology.

The 4004 was designed to be used with other members of the MCS-4/40 family (4001, 4002, 4003).

The packaging of the Intel 4004 (and the Second Source manufacturers) is shown below:

5.1. Instruction Set Format 21

Pyntel4004, Release ENV_VERSION

Manufacturer Model Package
Manufacturer Model Package
Intel C4004 16-pin Ceramic DIP
Intel D4004 16-pin Ceramic DIP
Intel P4004 16-pin Plastic DIP
National Semiconductor INS4004D 16-pin Ceramic DIP
National Semiconductor INS4004J 16-pin side-brazed Ceramic DIP
Hitachi HD35404 16-pin DIP
Microsystems International MF7114

Internally, the 4004 is a 4-bit microprocessor with 8-bit instructions. It is clocked at a frequency of 500KHz - 740KHz.
It contains 4096x8-bit ROM and 1280x4-bit RAM, with 2,300 transistors at a 10 micron definition. There are 45
instructions (46 including NOP) with a 4 level stack and sixteen 4-bit (or eight 8-bit) registers

For more detail, see the hardware characteristics or the instruction format.

Logically, the Intel 4004 is set out as shown:

Internal

22 Chapter 5. The Intel 4004 Chip

Pyntel4004, Release ENV_VERSION

including external

The circled numbers relate to the pins as shown below:

Pins described as follows:

5.1. Instruction Set Format 23

Pyntel4004, Release ENV_VERSION

Pin(s) Description
D0 - D3 Bi-Directional Data Bus. All address and data communication between the processor and

the RAM and ROM chips occurs on these 4 lines
V SS Most positive voltage
Clk-Phase 1 Clk-
Phase 2

2 phase clock inputs

SYNC SYNC Output. SYnchronisation signal generated by the processor and sent to the ROM and
RAM chips. It indicates the beginning of an instruction cycle

RESET RESET input. A logic ‘1’ at this input clears all flags and status registers and resets the
program counter to zero. To completely clear all address and index registers, RESET must
be applied for 64 clock cycles (8 macxhine cycles)

TEST TEST input. The logical state of this signal can be tested with the JCN instruction
CM-ROM CM-ROM Output. This is the ROM selection signal sent out by the processor when data is

required from program memory
V DD V DD - 15 +/-5% main supply voltage
CM-RAM0 - CM-
RAM3

CM-RAM Output. These are the bank selection signals for the 4001 and 4002 RAM chips
in the system

The CPU consists of the following components:

Component
a 4-bit adder
b 64-bit (16 x 4) index register
c 48-bit Program Counter
d Stack (nesting up to 3 levels if possible)
e Address incrementer
f 8-bit instruction register and decoder
g Control logic

Information flows between the 4004 and the other chips through a 4-line data bus. One 4004 may be combined with
up to 48 ROM (4001) and RAM (4002) chips in any combination.

A typical machine cycle starts with the CPU sending a synchronisation signal (SYNC) to the ROMs and RAMs. Next,
12 bits of ROM address are sent to the data bus using three clock cycles (@ 0.75Mhz). The address is then incremented
by one and stored in the Program Counter.

The selected ROM sends back 8 bits of instruction or data during the following two clock cycles.

This information is stored in two registers: OPR and OPA. The next three clock cycles are used to execute the instruction.
(See Basic Instruction Cycle on Page 5.)

The ROM bank is controlled by a command ROM control signal (CM-ROM) and up to four RAM banks are controlled
by four RAM control signals (CM-RAM 0, CM-RAM 1, CM-RAM 2, CM-RAM 3)

Bank switching is accomplished by the execution of a “DCL” instruction.

An input test signal (TEST) is used in conjunction with the jump on condition (”JCN”) instruction. An external RESET
signal is used to clear all registers and flip-flops. To fully clear all registers, the RESET signal must be applied for at
least 8 memory cycles (8 x 8 clock periods). After RESET the program will start from “0” step and CM-RAM 0 will
be selected.

The instruction repertoire of the 4004 consists of :

24 Chapter 5. The Intel 4004 Chip

Pyntel4004, Release ENV_VERSION

Instruction Type Number
Machine instruc-
tions (5 of which are
double length)

16

Accumulator group
instructions

14

Input/output and
RAM instructions

16

Total 45

No-Operation 1
TOTAL 46

Note: Bank Switching Bank switching is accomplished by the CPU after receiving a “DCL” (designate command
line) instruction. Prior to the execution of the DCL instruction the desired CM-RAM i code has been stored in the
accumulator (for example, through an LDM instruction). During DCL the CM-RAM i code is transferred from the
accumulator to the CM-RAM register. The RAM bank is then selected starting with the next instruction.

5.1. Instruction Set Format 25

Pyntel4004, Release ENV_VERSION

26 Chapter 5. The Intel 4004 Chip

CHAPTER

SIX

MCS-4 SYSTEM INTERCONNECTIONS

The MCS-4 uses a 10.8 𝜇 sec instruction cycle. The CPU (4004) generates a synchronisation (SYNC) signal, indicating
the start of an instruction cycle, and sends it to the ROMs (4001) and RAMs (4002).

Basic instruction execution requires 8 or 16 cycles of a 750 kHz clock. In a typical sequence, the CPU sends 12 bits of
address to the ROMs in three cycles (A 1, A 2, A 3). The selected ROM sends back 8 bits of instruction (OPR, OPA) to
the CPU in the next two cycles (M 1, M 2). The instruction is then interpreted and executed in the final 3 cycles (X 1,
X 2, X 3).

The CPU, RAMs and ROMs can be controlled by an external RESET line. While RESET is activated the contents of
the registers and flip-flops are cleared. After REST, the CPU will start from address 0 and CM-RAM 0 is selected.

The MCS-4 can have up to 4K x 8-bit ROM words, 1280 x 4-bit RAM characters and 128 I/O lines, without requiring
any interface logic. By adding a few extra gates, the MCS-4 can have up to 48 RAM and ROM packages in any
combination and 192 I/O lines.

The 4001, 4002, and 4004 are interconnected by a 4-line data bus (D 0, D 1, D 2, D 3) used for all information flow
between the chips except for the control signals sent by the CPU on 6 additional lines. The interconnection of the
MCS-4 system is shown below. Note that an expanded configuration is shown. The minimum system configuration
consists of one CPU (4004), and one ROM (4001). The timing diagram below shows the activity on the data bus during
each clock period, and how a basic instruction rate is subdivided.

Each data bus output buffer has 3 possible states - “1”, “0”, and “floating”. At any given time, only one output buffer
is allowed to drive a data line, therefore, all the other buffers must be in a floating condition. However, more than one
input buffer per data line can receive data at the same time.

The MCS-4 has a very powerful instruction set that allows both binary and decimal arithmetic. It allows conditional
branching, jump to subroutine and provides for the efficient use of ROM look up tables by indirect fetching. Typically,
2 8-bit numbers can be added in 850 𝜇 secs.

27

Pyntel4004, Release ENV_VERSION

28 Chapter 6. MCS-4 System Interconnections

CHAPTER

SEVEN

CHIP PACKAGING AND CHARACTERISTICS

Each of the chips in the MCS-4 series have the same packaging dimensions depending on the construction:

Ceramic Packaging

29

Pyntel4004, Release ENV_VERSION

Plastic Packaging

30 Chapter 7. Chip Packaging and characteristics

CHAPTER

EIGHT

MCS-4 CHIPSET HARDWARE CHARACTERISTICS

8.1 4001 Hardware Characteristics

Absolute Maximum Ratings

Ambient Temperature Under Bias 0 o C to +70 o C
Storage Temperature -55 o C to +125 o C
Input Voltage and Supply Voltage with respect to V SS +0.5 to -20 V
Power Dissipation 1.0 W

Note that stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This
is a stress rating only and functional operation of the device at these or any other conditions above those indicated in
the operational sections of this specification is not implied.

D.C. and Operating Characteristics

𝑇𝐴 = 0𝑜 C to 70𝑜 C

𝑉𝑆𝑆 - 𝐷𝐷𝐷 = 15V ± 5%

𝑡𝜑𝑃𝑊 = 𝑡𝜑𝐷1 = 400nsec

logic “0” is defined as the more positive voltage (𝑉𝐼𝐻 , 𝑉𝑂𝐻)

logic “1” is defined as the more negative voltage (𝑉𝐼𝐿, 𝑉𝑂𝐿); unless otherwise specified.

SUPPLY Current

Symbol Parameter Min Limit Typical Max Unit Test Conditions
𝐼𝐷𝐷 Average Supply Current 15 30 mA 𝑇𝐴 = 25𝑜 C

Input Characteristics
𝐼𝐿𝐼 Input Leakage Current 10 𝜇𝐴 𝑉𝐼𝐿 - 𝑉𝐷𝐷

𝑉𝐼𝐻 Input High Voltage (except clocks) 𝑉𝑆𝑆 -1.5 𝑉𝑆𝑆 +0.3 V
𝑉𝐼𝐿 Input Low Voltage (except clocks) 𝑉𝐷𝐷 𝑉𝑆𝑆 -5.5 V
𝑉𝐼𝐻𝐶 Input High Voltage Clocks 𝑉𝑆𝑆 -1.5 𝑉𝑆𝑆 +0.3 V

continues on next page

31

Pyntel4004, Release ENV_VERSION

Table 1 – continued from previous page
Symbol Parameter Min Limit Typical Max Unit Test Conditions
𝑉𝐼𝐿𝐶 Input Low Voltage Clocks 𝑉𝐷𝐷 𝑉𝑆𝑆 -13.4 V

Output Characteristics - All outputs except I/O Pins
𝐼𝐿𝑂 Data Bus Output Leakage Current 10 𝜇𝐴 𝑉𝑂𝑈𝑇 = -12V
𝑉𝑂𝐻 Output High Voltage 𝑉𝑆𝑆-0.5V 𝑉𝑆𝑆 V Capacitance Load
𝐼𝑂𝐿 Data Lines Sinking Current 8 15 mA 𝑉𝑂𝑈𝑇 = 𝑉𝑆𝑆

𝑉𝑂𝐿 Output Low Voltage, Data Bus, CM, Sync 𝑉𝑆𝑆-12 𝑉𝑆𝑆-6.5 V 𝐼𝑂𝐿 = 0.5mA
𝑅𝑂𝐻 Output Resistance, Data Line 0 Level 150 250 Ω 𝑉𝑂𝑈𝑇 = 𝑉𝑆𝑆 - 0.5V

I/O Input Characteristics
𝐼𝐿𝐼 Input Leakage Current 10 𝜇𝐴
𝑉𝐼𝐻 Input High Voltage 𝑉𝑆𝑆 -1.5V | 𝑉𝑆𝑆 +0.3 V
𝐼𝐼𝐿 Input Low Voltage, Inverting Input 𝑉𝐷𝐷 𝑉𝑆𝑆 -4.2 V
𝑉𝐼𝐿 Input Low Voltage, Non-Inverting Input 𝑉𝐷𝐷 𝑉𝑆𝑆 -6.5 V
𝑉𝐼𝐿 CL Low Voltage 𝑉𝐷𝐷 𝑉𝑆𝑆 -4.2 V
𝑅𝐼 Input Resistance, if used 10 18 35 𝑘Ω 𝑅1 tied to 𝑉𝑆𝑆 ; 𝑉𝐼𝑁 - 𝑉𝑆𝑆 - 0.3V
𝑅1

[1] Input Resistance, if used 15 25 40 𝑘Ω 𝑅1 tied to 𝑉𝐷𝐷 ; 𝑉𝐼𝑁 - 𝑉𝑆𝑆 - 0.3V
I/O Output Characteristics

𝑉𝑂𝐻 Output High Voltage 𝑉𝑆𝑆 -1.5V V 𝐼𝑂𝑈𝑇 = 0
𝑅𝑂𝐻 I/O Output “0” Resistance 1.2 2 𝑘Ω 𝑉𝑂𝑈𝑇 - 𝑉𝑆𝑆 - 0.5V
𝐼𝑂𝐿 I/O Output “1” Sink current 2.5 5 𝜇𝐴 𝑉𝑂𝑈𝑇 - 𝑉𝑆𝑆 - 0.5V
𝐼𝑂𝐿

[2] I/O Output “1” Sink current 0.8 3 𝜇𝐴 𝑉𝑂𝑈𝑇 - 𝑉𝑆𝑆 - 4.85V
𝑉𝑂𝐿 I/O Output Low Voltage 𝑉𝐷𝐷 -12 𝑉𝑆𝑆 -6.5 V 𝐼𝑂𝑈𝑇 = 50𝜇𝐴

Capacitance
𝐶𝜑 Clock Capacitance 8 15 pF 𝑉𝐼𝑁 - 𝑉𝑆𝑆

𝐶𝐷𝐵 Data Bus Capacitance 9.5 15 pF 𝑉𝐼𝑁 - 𝑉𝑆𝑆

𝐶𝐼𝑁 Input Capacitance 10 pF 𝑉𝐼𝑁 - 𝑉𝑆𝑆

𝐶𝑂𝑈𝑇 Output Capacitance 10 pF 𝑉𝐼𝑁 - 𝑉𝑆𝑆

Note: [1] 𝑅1 is large signal equivalent resistance to (𝑉𝑆𝑆 − 4.85) V

[2] For Transistor-transistor logic (TTL) compatibility, use 12𝑘Ω external resistor to 𝑉𝐷𝐷

32 Chapter 8. MCS-4 chipset hardware characteristics

https://en.wikipedia.org/wiki/Transistor\T1\textendash {}transistor_logic

Pyntel4004, Release ENV_VERSION

Typical D.C. Characteristics

A.C. Characteristics

𝑇𝐴 = 0𝑜 C to 70𝑜 C

𝑉𝑆𝑆 - 𝐷𝐷𝐷 = 15V ± 5%

Sym-
bol

Parameter Min Limit
Typi-
cal

Max Unit Test Conditions

𝑡𝐶𝑌 Clock Period 1.35 2.0 𝜇𝑠𝑒𝑐
𝑡𝜑𝑅 Clock Rise Times 50 ns
𝑡𝜑𝐹 Clock Fall Times 50 ns
𝑡𝜑𝑃𝑊 Clock Width 380 480 ns
𝑡𝜑𝐷1 Clock Delay 𝑡𝜑1 to 𝑡𝜑2 400 550 ns
𝑡𝜑𝐷2 Clock Delay 𝑡𝜑2 to 𝑡𝜑1 150 ns
𝑡𝑊 Data-In, CM, SYNC Write

Time
350 100 ns

𝑡𝐻
[1,3]

Data-In, CM, SYNC Hold Time 40 20 ns

𝑡𝑂𝑆
[2]

Set Time (Reference) 0 ns

𝑡𝐴𝐶𝐶 Data-Out Access Time Data
Lines SYNC CM-ROM CM-
RAM

930 930
930 930

ns 𝐶𝑂𝑈𝑇 = 500pF Data Lines 500pF
SYNC 160pF CM-ROM 50pF CM-
RAM

𝑡𝑂𝐻 Data-Out Hold Time 50 150 ns 𝐶𝑂𝑈𝑇 = 20pF
𝑡𝐼𝑆 I/O Input Set-Time 50 ns
𝑡𝐼𝐻 I/O Input Hold-Time 100 ns
𝑡𝐷 I/O Output Delay 1500 ns 𝐶𝑂𝑈𝑇 = 100pF
𝑡𝐷
[4]

I/O Output Lines Delay on
Clear

1500 ns 𝐶𝑂𝑈𝑇 = 100pF

8.1. 4001 Hardware Characteristics 33

Pyntel4004, Release ENV_VERSION

Note: [1] 𝑡𝐻 measured with 𝑡𝜑𝑅 = 10nsec

[2] 𝑇𝐴𝐶𝐶 is Data Bus, SYNC and CM-line output access time referred to the 𝜑2 trailing edge which clocks these lines
out. 𝑡𝑂𝑆 is the same output access time referred to the leading edge of the next 𝜑2 clock pulse.

[3] All MCS-40 components which may transmit instruction or data to the 4004 at𝑀2 and𝑋2 always enter a float state
until the 4004 takes over the data bus at 𝑋1 and 𝑋3 time. Therefore, the 𝑇𝐻 requirement is always insured since each
component contributes 10𝜇𝐴 of leakage current and 10pF of capacitance, which guarantees that the data bus cannot
change faster than 1𝑉/𝜇𝑠𝑒𝑐

[4] CL on the 4001 is used to asynchronously clear the input flip-flops associated with the I/O lines.

4001 Timing Diagram

34 Chapter 8. MCS-4 chipset hardware characteristics

Pyntel4004, Release ENV_VERSION

4001 Timing Diagram Detail

8.2 4002 Hardware Characteristics

Absolute Maximum Ratings

Ambient Temperature Under Bias 0 o C to +70 o C
Storage Temperature -55 o C to +125 o C
Input Voltage and Supply Voltage with respect to V SS +0.5 to -20 V
Power Dissipation 1.0 W

Note that stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This
is a stress rating only and functional operation of the device at these or any other conditions above those indicated in
the operational sections of this specification is not implied.

D.C. and Operating Characteristics

𝑇𝐴 = 0𝑜 C to 70𝑜 C

𝑉𝑆𝑆 - 𝐷𝐷𝐷 = 15V ± 5%

𝑡𝜑𝑃𝑊 = 𝑡𝜑𝐷1 = 400nsec

logic “0” is defined as the more positive voltage (𝑉𝐼𝐻 , 𝑉𝑂𝐻)

logic “1” is defined as the more negative voltage (𝑉𝐼𝐿, 𝑉𝑂𝐿); unless otherwise specified.

SUPPLY Current

8.2. 4002 Hardware Characteristics 35

Pyntel4004, Release ENV_VERSION

Sym-
bol

Parameter Min Limit Typi-
cal

Max Unit Test Conditions

𝐼𝐷𝐷 Average Supply Current 17 33 mA 𝑇𝐴 = 25𝑜 C
Input Characteristics
𝐼𝐿𝐼 Input Leakage Current 10 𝜇𝐴 𝑉𝐼𝐿 - 𝑉𝐷𝐷

𝑉𝐼𝐻 Input High Voltage (except clocks) 𝑉𝑆𝑆 -1.5 𝑉𝑆𝑆

+0.3
V

𝑉𝐼𝐿 Input Low Voltage (except clocks) 𝑉𝐷𝐷 𝑉𝑆𝑆

-5.5
V

𝑉𝐼𝐻𝐶 Input High Voltage Clocks 𝑉𝑆𝑆 -1.5 𝑉𝑆𝑆

+0.3
V

𝑉𝐼𝐿𝐶 Input Low Voltage Clocks 𝑉𝐷𝐷 𝑉𝑆𝑆

-13.4
V

Output Characteristics - All outputs except I/O Pins
𝐼𝐿𝑂 Data Bus Output Leakage Current 10 𝜇𝐴 𝑉𝑂𝑈𝑇 = -12V
𝑉𝑂𝐻 Output High Voltage 𝑉𝑆𝑆-

0.5V
𝑉𝑆𝑆 V Capacitive Load

𝐼𝑂𝐿 Data Lines Sinking Current 8 15 mA 𝑉𝑂𝑈𝑇 = 𝑉𝑆𝑆

𝑉𝑂𝐿 Output Low Voltage, Data Bus, CM,
Sync

𝑉𝑆𝑆-12 𝑉𝑆𝑆-6.5 V 𝐼𝑂𝐿 = 0.5mA

𝑅𝑂𝐻 Output Resistance, Data Line 0
Level

150 250 Ω 𝑉𝑂𝑈𝑇 = 𝑉𝑆𝑆 -
0.5V

I/O Output Characteristics
𝑉𝑂𝐻 Output High Voltage 𝑉𝑆𝑆

-1.5V
V 𝐼𝑂𝑈𝑇 = 0

𝑅𝑂𝐻 I/O Output “0” Resistance 1.2 2 𝑘Ω 𝑉𝑂𝑈𝑇 - 𝑉𝑆𝑆 -
0.5V

𝐼𝑂𝐿 I/O Output “1” Sink current 2.5 5 𝜇𝐴 𝑉𝑂𝑈𝑇 - 𝑉𝑆𝑆 -
0.5V

𝐼𝑂𝐿
[1] I/O Output “1” Sink current 0.8 3 𝜇𝐴 𝑉𝑂𝑈𝑇 - 𝑉𝑆𝑆 -

4.85V
𝑉𝑂𝐿 I/O Output Low Voltage 𝑉𝐷𝐷 -12 𝑉𝑆𝑆

-6.5
V 𝐼𝑂𝑈𝑇 = 50𝜇𝐴

Capacitance
𝐶𝜑 Clock Capacitance 8 15 pF 𝑉𝐼𝑁 - 𝑉𝑆𝑆

𝐶𝐷𝐵 Data Bus Capacitance 7 10 pF 𝑉𝐼𝑁 - 𝑉𝑆𝑆

𝐶𝐼𝑁 Input Capacitance 10 pF 𝑉𝐼𝑁 - 𝑉𝑆𝑆

𝐶𝑂𝑈𝑇 Output Capacitance 10 pF 𝑉𝐼𝑁 - 𝑉𝑆𝑆

Note: [1] For Transistor-transistor logic (TTL) compatibility, use 12𝑘Ω external resistor to 𝑉𝐷𝐷

36 Chapter 8. MCS-4 chipset hardware characteristics

https://en.wikipedia.org/wiki/Transistor\T1\textendash {}transistor_logic

Pyntel4004, Release ENV_VERSION

Typical D.C. Characteristics

A.C. Characteristics

𝑇𝐴 = 0𝑜 C to 70𝑜 C

𝑉𝑆𝑆 - 𝐷𝐷𝐷 = 15V ± 5%

Sym-
bol

Parameter Min Limit
Typi-
cal

Max Unit Test Conditions

𝑡𝐶𝑌 Clock Period 1.35 2.0 𝜇𝑠𝑒𝑐
𝑡𝜑𝑅 Clock Rise Times 50 ns
𝑡𝜑𝐹 Clock Fall Times 50 ns
𝑡𝜑𝑃𝑊 Clock Width 380 480 ns
𝑡𝜑𝐷1 Clock Delay 𝑡𝜑1 to 𝑡𝜑2 400 550 ns
𝑡𝜑𝐷2 Clock Delay 𝑡𝜑2 to 𝑡𝜑1 150 ns
𝑡𝑊 Data-In, CM, SYNC Write

Time
350 100 ns

𝑡𝐻
[1,3]

Data-In, CM, SYNC Hold Time 40 20 ns

𝑡𝑂𝑆
[2]

Set Time (Reference) 0 ns

𝑡𝐴𝐶𝐶 Data-Out Access Time Data
Lines SYNC CM-ROM CM-
RAM

930 930
930 930

ns 𝐶𝑂𝑈𝑇 = 500pF Data Lines 500pF
SYNC 160pF CM-ROM 50pF CM-
RAM

𝑡𝑂𝐻 Data-Out Hold Time 50 150 ns 𝐶𝑂𝑈𝑇 = 20pF
𝑡𝐷 I/O Output Delay 1500 ns 𝐶𝑂𝑈𝑇 = 100pF

Note: [1] 𝑡𝐻 measured with 𝑡𝜑𝑅 = 10nsec

[2] 𝑇𝐴𝐶𝐶 is Data Bus, SYNC and CM-line output access time referred to the 𝜑2 trailing edge which clocks these lines
out. 𝑡𝑂𝑆 is the same output access time referred to the leading edge of the next 𝜑2 clock pulse.

8.2. 4002 Hardware Characteristics 37

Pyntel4004, Release ENV_VERSION

[3] All MCS-40 components which may transmit instruction or data to the 4004 at𝑀2 and𝑋2 always enter a float state
until the 4004 takes over the data bus at 𝑋1 and 𝑋3 time. Therefore, the 𝑇𝐻 requirement is always insured since each
component contributes 10𝜇𝐴 of leakage current and 10pF of capacitance, which guarantees that the data bus cannot
change faster than 1𝑉/𝜇𝑠𝑒𝑐

4002 Timing Diagram

4002 Timing Diagram Detail

38 Chapter 8. MCS-4 chipset hardware characteristics

Pyntel4004, Release ENV_VERSION

8.3 4003 Hardware Characteristics

Absolute Maximum Ratings

Ambient Temperature Under Bias 0 o C to +70 o C
Storage Temperature -55 o C to +125 o C
Input Voltage and Supply Voltage with respect to V SS +0.5 to -20 V
Power Dissipation 1.0 W

Note that stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This
is a stress rating only and functional operation of the device at these or any other conditions above those indicated in
the operational sections of this specification is not implied.

D.C. and Operating Characteristics

𝑇𝐴 = 0𝑜 C to 70𝑜 C

𝑉𝑆𝑆 - 𝐷𝐷𝐷 = 15V ± 5%

𝑡𝜑𝑃𝑊 = 𝑡𝜑𝐷1 = 400nsec

𝑡𝜑𝐷2 = 400nsec ; unless otherwise specified.

logic “0” is defined as the more positive voltage (𝑉𝐼𝐻 , 𝑉𝑂𝐻)

logic “1” is defined as the more negative voltage (𝑉𝐼𝐿, 𝑉𝑂𝐿)

SUPPLY Current

Sym-
bol

Parameter Min Limit Typi-
cal [1]

Max Unit Test Conditions

𝐼𝐷𝐷 Average Supply Current 5.0 8.5 mA 𝑇𝑊𝐿 = 𝑇𝑊𝐻 = 8𝜇𝑠 ; 𝑇𝐴
= 25𝑜 C

Input Characteristics
𝐼𝐿𝐼 Input Leakage Current 10 𝜇𝐴 𝑉𝐼𝐿 - 𝑉𝐷𝐷

𝑉𝐼𝐻 Input High Voltage 𝑉𝑆𝑆 -
1.5

𝑉𝑆𝑆

+0.3
𝑉𝐼𝐿 Input Low Voltage 𝑉𝐷𝐷 𝑉𝑆𝑆

-4.2
V

I/O Output Characteristics
𝐼𝑂𝐻 Parallel Out Pins Sinking Current,

“1” Level
0.6 1.0 𝜇𝐴 𝐼𝑂𝑈𝑇 = 0

𝐼𝑂𝐿 Serial Out Pins Sinking Current,
“1” Level

1.0 2.0 𝜇𝐴 𝑉𝑂𝑈𝑇 - 𝑉𝑆𝑆 - 0.5V

𝑉𝑂𝐿 I/O Output Low Voltage 𝑉𝑆𝑆 -
11

𝑉𝑆𝑆 -7.5 𝑉𝑆𝑆

-6.5
V 𝐼𝑂𝑈𝑇 = 50𝜇𝐴

𝑅𝑂𝐻 Parallel Out Pins Resistance, “0”
Level

400 750 𝑘Ω 𝐼𝑂𝑈𝑇 = 0

𝑅𝑂𝐻 Serial Out Resistance, “0” Level 650 1200 𝑘Ω 𝑉𝑂𝑈𝑇 - 𝑉𝑆𝑆 - 0.5V

Capacitance

8.3. 4003 Hardware Characteristics 39

Pyntel4004, Release ENV_VERSION

f = 1MHz; 𝑉𝐼𝑁 = 0V; 𝑇𝐴 = 25𝑜𝐶 Unmeasured Pins Grounded

Symbol Test Typ. Max Unit
𝐶𝐼𝑁 Input Capacitance 5 10 pF

Note: [1] Typical values are to 𝑇𝐴 = 25𝑜 C and Nominal Supply Voltages

[2] For Transistor-transistor logic (TTL) compatibility, use 12𝑘Ω external resistor to 𝑉𝐷𝐷

Typical D.C. Characteristics

A.C. Characteristics

𝑇𝐴 = 0𝑜 C to 70𝑜 C

𝑉𝐷𝐷 = 15V ± 5%

𝑉𝑆𝑆 = GND

Symbol Parameter Min Limit Typical Max Unit Test Conditions
𝑡𝑊𝐿 CP Low Width 6 10,000 𝜇𝑠𝑒𝑐
𝑡𝑊𝐻

[1] CP High Width 6 𝜇𝑠𝑒𝑐
𝑡𝐶𝐷 Clock-On to Clock-Off Time 3 𝜇𝑠𝑒𝑐
𝑡𝐷𝑑

[2] CP to Data Set Delay 250 ns
𝑡𝑑1 CP to Data Out Delay 250 1750 ns
𝑡𝑑2 Enable to Data Out Delay 350 ns 𝐶𝑂𝑈𝑇 = 20pF
𝑡𝑑3 CP to Serial Out Delay 200 1250 ns 𝐶𝑂𝑈𝑇 = 20pF
𝑡𝑑4 Enable to Data Out Delay 40 1.0 𝜇𝑠𝑒𝑐 𝐶𝑂𝑈𝑇 = 20pF

Note: [1] 𝑡𝑊𝐻 can be any time greater than 6𝜇𝑠

40 Chapter 8. MCS-4 chipset hardware characteristics

https://en.wikipedia.org/wiki/Transistor\T1\textendash {}transistor_logic

Pyntel4004, Release ENV_VERSION

[2] Data can occur prior to CP

4003 Timing Diagram

8.4 4004 Hardware Characteristics

Absolute Maximum Ratings

Ambient Temperature Under Bias 0 o C to +70 o C
Available with Operating Temp of -40 o C to +85 o C

Storage Temperature -55 o C to +100 o C
Input Voltage and Supply Voltage with respect to V SS +0.5 to -20 V
Power Dissipation 1.0 W

Note that stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This
is a stress rating only and functional operation of the device at these or any other conditions above those indicated in
the operational sections of this specification is not implied.

D.C. and Operating Characteristics

𝑇𝐴 = 0𝑜 C to 70𝑜 C

𝑉𝑆𝑆 - 𝐷𝐷𝐷 = 15V ± 5%

𝑡𝜑𝑃𝑊 = 𝑡𝜑𝐷1 = 400nsec

logic “0” is defined as the more positive voltage (𝑉𝐼𝐻 , 𝑉𝑂𝐻)

logic “1” is defined as the more negative voltage (𝑉𝐼𝐿, 𝑉𝑂𝐿); unless otherwise specified.

8.4. 4004 Hardware Characteristics 41

Pyntel4004, Release ENV_VERSION

Sym-
bol

Parameter Min Limit Typi-
cal

Max Unit Test Condi-
tions

Input Characteristics
𝐼𝐷𝐷 Average Supply Current 30 40 mA 𝑇𝐴 = 25𝑜 C
Input Characteristics
𝐼𝐿𝐼 Input Leakage Current 10 𝜇𝐴 𝑉𝐼𝐿 - 𝑉𝐷𝐷

𝑉𝐼𝐻 Input High Voltage (except clocks) 𝑉𝑆𝑆

-1.5
𝑉𝑆𝑆

+0.3
V

𝑉𝐼𝐿 Input Low Voltage (except clocks) 𝑉𝐷𝐷 𝑉𝑆𝑆

-5.5
V

𝑉𝐼𝐿𝑂 Input Low Voltage 𝑉𝐷𝐷 𝑉𝑆𝑆

-4.2
V 4004 Test input

𝑉𝐼𝐻𝐶 Input High Voltage Clocks 𝑉𝑆𝑆

-1.5
𝑉𝑆𝑆

+0.3
V

𝑉𝐼𝐿𝐶 Input Low Voltage Clocks 𝑉𝐷𝐷 𝑉𝑆𝑆

-13.4
V

Output Characteristics
𝐼𝐿𝑂 Data Bus Output Leakage Current 10 𝜇𝐴 𝑉𝑂𝑈𝑇 = -12V
𝑉𝑂𝐻 Output High Voltage 𝑉𝑆𝑆-

0.5V
𝑉𝑆𝑆 V Capacitance

Load
𝐼𝑂𝐿 Data Lines Sinking Current 8 15 mA 𝑉𝑂𝑈𝑇 = 𝑉𝑆𝑆

𝐼𝑂𝐿 CM-ROM Sinking Current 6.5 12 mA 𝑉𝑂𝑈𝑇 = 𝑉𝑆𝑆

𝐼𝑂𝐿 CM-RAM Sinking Current 2.5 6 mA 𝑉𝑂𝑈𝑇 = 𝑉𝑆𝑆

𝑉𝑂𝐿 Output Low Voltage, Data Bus, CM,
Sync

𝑉𝑆𝑆-12 𝑉𝑆𝑆-6.5 V 𝐼𝑂𝐿 = 0.5mA

𝑅𝑂𝐻 Output Resistance, Data Line 0 Level 150 250 Ω 𝑉𝑂𝑈𝑇 = 𝑉𝑆𝑆 -
0.5V

𝑅𝑂𝐻 CM-ROM Output Resistance, Data Line
0 Level

320 600 Ω 𝑉𝑂𝑈𝑇 = 𝑉𝑆𝑆 -
0.5V

𝑅𝑂𝐻 CM-RAM Output Resistance, Data Line
0 Level

1.1 1.8 𝑘Ω 𝑉𝑂𝑈𝑇 = 𝑉𝑆𝑆 -
0.5V

Capacitance
𝐶𝜑 Clock Capacitance 14 20 pF 𝑉𝐼𝑁 - 𝑉𝑆𝑆

𝐶𝐷𝐵 Data Bus Capacitance 7 10 pF 𝑉𝐼𝑁 - 𝑉𝑆𝑆

𝐶𝐼𝑁 Input Capacitance 10 pF 𝑉𝐼𝑁 - 𝑉𝑆𝑆

𝐶𝑂𝑈𝑇 Output Capacitance 10 pF 𝑉𝐼𝑁 - 𝑉𝑆𝑆

42 Chapter 8. MCS-4 chipset hardware characteristics

Pyntel4004, Release ENV_VERSION

Typical D.C. Characteristics

A.C. Characteristics

𝑇𝐴 = 0𝑜 C to 70𝑜 C

𝑉𝑆𝑆 - 𝐷𝐷𝐷 = 15V ± 5%

Sym-
bol

Parameter Min Limit
Typi-
cal

Max Unit Test Conditions

𝑡𝐶𝑌 Clock Period 1.35 2.0 𝜇𝑠𝑒𝑐
𝑡𝜑𝑅 Clock Rise Times 50 ns
𝑡𝜑𝐹 Clock Fall Times 50 ns
𝑡𝜑𝑃𝑊 Clock Width 380 480 ns
𝑡𝜑𝐷1 Clock Delay 𝑡𝜑1 to 𝑡𝜑2 400 550 ns
𝑡𝜑𝐷2 Clock Delay 𝑡𝜑2 to 𝑡𝜑1 150 ns
𝑡𝑊 Data-In, CM, SYNC Write

Time
350 100 ns

𝑡𝐻
[1,3]

Data-In, CM, SYNC Hold
Time

40 20 ns

𝑡𝐻
[3]

Data Bus Hold Time in 𝑀2 -
𝑋1 and 𝑋2 - 𝑋3 transition

40 20 ns

𝑡𝑂𝑆

[2]
Set Time (Reference) 0 ns

𝑡𝐴𝐶𝐶 Data-Out Access Time Data
Lines Data Lines SYNC CM-
ROM CM-RAM

930 700
930 930
930

ns 𝐶𝑂𝑈𝑇 = 500pF Data Lines 200pF Data
Lines 500pF SYNC 160pF CM-ROM
50pF CM-RAM

𝑡𝑂𝐻 Data-Out Hold Time 50 150 ns 𝐶𝑂𝑈𝑇 = 50pF

8.4. 4004 Hardware Characteristics 43

Pyntel4004, Release ENV_VERSION

Note: [1] 𝑡𝐻 measured with 𝑡𝜑𝑅 = 10nsec

[2] 𝑇𝐴𝐶𝐶 is Data Bus, SYNC and CM-line output access time referred to the 𝜑2 trailing edge which clocks these lines
out. 𝑡𝑂𝑆 is the same output access time referred to the leading edge of the next 𝜑2 clock pulse.

[3] All MCS-40 components which may transmit instruction or data to the 4004 at𝑀2 and𝑋2 always enter a float state
until the 4004 takes over the data bus at 𝑋1 - 𝑋3 time. Therefore, the 𝑇𝐻 requirement is always insured since each
component contributes 10𝜇𝐴 of leakage current and 10pF of capacitance, which guarantees that the data bus cannot
change faster than 1𝑉/𝜇𝑠𝑒𝑐

[4] 𝐶𝐷𝐴𝑇𝐴𝐵𝑈𝑆 = 200pF if 4008 and 4009 or 4298 is used.

4004 Timing Diagram

4004 Timing Diagram Detail

44 Chapter 8. MCS-4 chipset hardware characteristics

Pyntel4004, Release ENV_VERSION

The multiple chips in the MCS-4 chipset have their own unique hardware characteristics:

• 4001

• 4002

• 4003

• 4004

8.4. 4004 Hardware Characteristics 45

Pyntel4004, Release ENV_VERSION

46 Chapter 8. MCS-4 chipset hardware characteristics

CHAPTER

NINE

OVERVIEW OF PYNTEL4004

Pyntel4004 consists of two components:

• an Intel 4004 assembler/disassembler

• an Intel 4004 emulator to run assembled code

Hardware emulation

The Intel 4004 emulator mimics the hardware of an original Intel 4004 processor and its’ support chips through software.

Each instruction in Pyntel4004 acts on a virtual processor in the same way as the original hardware implementations
of the instructions would act upon the real hardware.

The intention is to test the assembled code on a real Intel 4004 chip to verify this..

Usage

In order to use these tools, a source file must first be prepared in i4004 assembly language.

/ Example program
org ram
fim 2 254
end

This file should then be assembled into 4004 machine code.

In order to do this, the CLI package should be installed:

pip install pyntel4004-cli

The full instructions for Pyntel4004-CLI should be read, however, a basic summary is below: ### Basic Usage.

4004 <command> <options> <arguments>

<command> - asm Assemble the input file - dis Disassemble the input file - exe Execute the object file

<options> - -h, –help: Show help. - -v, –version: Show the version and exit.

asm options.

• -i, –input <input file>: assembly language source file.

• -o, –output <output file>: object code output file.

• -e, –exec: execute the assembled program if successful assembly.

47

Pyntel4004, Release ENV_VERSION

• -t, –type <extension>: Type of output required. (multiple output types can be specified)
– bin will deliver a binary file of machine code

– obj will deliver an object module which can be loaded back into the disassembler for debugging

– h will deliver a c-style header file that can be used in a RetroShield Arduino to run the code on a real
4004

– ALL will deliver all of the above<details>New in 0.0.1-alpha.2<summary>Changelog</summary></details>

• -c, –config <config file>: use the specified config file<details>New in 0.0.1-
alpha.2<summary>Changelog</summary></details>

• -q, –quiet: Quiet mode on *

• -m, –monitor: Start monitor*

• -h, –help: Show help.

*Mutually exclusive parameters

dis options.

• -o, –object <object file>: object code or binary input file.

• -l, –labels: show the label table (only available in .OBJ files)<details>New in 0.0.1-
alpha.2<summary>Changelog</summary></details>

• -c, –config <config file>: use the specified config file<details>New in 0.0.1-
alpha.2<summary>Changelog</summary></details>

• -b, –byte: number of bytes to disassemble (between 1 and 4096).

• -h, –help: Show help.

It is the user’s responsibility to understand that if a byte count causes the disassembler to end up
midway through a 2-byte instruction, that last instruction will not be disassembled correctly.

exe options.

• -o, –object <object file>: object code or binary input file.

• -c, –config <config file>: use the specified config file<details>New in 0.0.1-
alpha.2<summary>Changelog</summary></details>

• -q, –quiet: Quiet mode on

• -h, –help: Show help.

48 Chapter 9. Overview of Pyntel4004

Pyntel4004, Release ENV_VERSION

9.1 Error Messages

Error messages are displayed when there are issues with either the supplied command, or issues with the source code
itself. The errors are raised as exceptions, with an exception type together with an information message

9.2 Errors

Command | Exception | Options | Message |

|---|—|----|–| | asm | BadParameter | |Invalid Parameter Combination: --quiet and --monitor cannot be used together
| | asm | BadOptionUsage | --type |Invalid output type specified | | asm | BadOptionUsage | --type |Cannot specify
'ALL' with any others| |dis| BadOptionUsage| –inst | Instructions should be between 1 and 4096 |

Special Error Message

Exception | Message |

|-----------|———| | CoreNotInstalled| Pyntel4004 core is not installed - use pip install Pyntel4004

9.3 Configuration Files

<details>New in 0.0.1-alpha.2<summary>Changelog</summary></details>
 Pyntel4004-cli configuration files
are specified using the [TOML](http://toml.io/) notation. This is a notation which favours humans over machines, so
it is easy to understand and write the configuration you want.

 Example Configuration File - example2.toml

``` # Configuration for Pyntel4004-cli.

title = “Configuration file for example2.asm”

[asm] input = “example2.asm” output = “example2” type = [“BIN”, “H”] exec = true monitor = true quiet = true

[dis] object = “examples/example2.obj” inst = 6 labels = true

[exe] object = “examples/example2.obj” quiet = true ```
The configuration file has 4 sections:

This MUST be first

i) The title - simply a description of what the configuration file is for. Note that any comments (lines starting with
a `#` can be added anywhere for readability).

(in no particular order)

ii) `[asm]` section containing directives for the assembly of a specific program source file

iii) `[dis]` section containing directives for the disassembly of a specific object module

iv) `[exe]` section containing directives for the execution of a specific object module

The valid configuration tokens are shown in the example above - they mirror the options that can be specified on the
command line.

ANY of the configuration tokens can be overriden simply by specifying them on the command line.

9.1. Error Messages 49

http://toml.io/


Pyntel4004, Release ENV_VERSION

50 Chapter 9. Overview of Pyntel4004



CHAPTER

TEN

MCS-4 ASSEMBLY LANGUAGE PROGRAMMING MANUAL

10.1 Acknowledgements

The majority of the text within the expanded MSC-4 manual is © Intel <intel.com>_ 1971, 1973

Additional text is © 4004.com

Datasheets provided by chipdb.org

bitsavers.org provided: MCS-4 Assembly Language Manual MCS-4 Users Manual Intellec-4 manual

Chip images © cpu-zone.com

Second Source information provided by wikichip.org

51

http://4004.com
http://datasheets.chipdb.org/Intel/MCS-4/datashts/MCS4_Data_Sheet_Nov71.pdf
http://www.bitsavers.org/components/intel/MCS4/MCS-4_Assembly_Language_Programming_Manual_Dec73.pdf
http://www.bitsavers.org/components/intel/MCS4/MCS-4_UsersManual_Feb73.pdf
http://www.bitsavers.org/components/intel/MCS4/Intel_Intellec_4_and_Micro_Computer_Modules_Jan74.pdf
http://www.cpu-zone.com/4001.htm
wikichip.org


Pyntel4004, Release ENV_VERSION

10.2 Glossary of Terms

Term Definition
Ad-
dress

A 12 bit number assigned to a read-only-memory or program random-access memory location corresponding
to its sequential position.

Bit The smallest unit of information which can be represented. (A bit may be in one of two states, 0 or 1).
Byte A group of 8 contiguous bits occupying a single memory location.
Char-
ac-
ter

A group of 4 contiguous bits of data.

In-
struc-
tion

The smallest single operation that the computer can be directed to execute.

Ob-
ject
Pro-
gram

A program which can be loaded directly into the computer’s memory and which requires no alteration before
execution. An object program was usually on paper tape, and is produced by assembling a source program,
however the Pyntel4004 Assembler can produce object code to be loaded into an emulator or directly on to
a board simulating an MCS-4. Instructions are represented by binary machine code in an object program.

Pro-
gram

A sequence of instructions which are taken as a group to allow the computer to accomplish a desired task.

Source
Pro-
gram

A program which is readable by a programmer but which must be transformed into object program format
before it can be loaded into the computer and executed. Instructions in an assembly language source program
are represented by their assembly language mnemonic.

Sys-
tem
Pro-
gram

A program written to help in the process of creating user programs.

User
Pro-
gram

A program written by the user to make the computer perform any desired task.

nnnb nnn represents a number in binary format.
0xnn nnn represents a number in hexadecimal format.

Note

All numbers in this document are assumed to be decimal unless otherwise specified.

Note

A representation of a byte in memory. Bits which are fixed are indicated by 0 or 1; bits vvhich may be either 0 or 1 in
different circumstances are represented by letters; thus RP represents a three-bit field which contains one of the eight
possible combinations of zeroes and ones.

52 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

10.3 Introduction

This document has been written to help the reader program the INTEL 4004 microcomputer in assembly language, and
to show how it is economical and practical to do so.

Accordingly, this manual assumes that the reader has a good understanding of logic, but may be unfamiliar with pro-
gramming concepts.

For those readers who do understand programming concepts, several features of the INTEL 4004 microcomputer are
described below. They include:

• 4 bit parallel CPU on a single chip.

• 46 instructions, including conditional branching, subroutine capability, and binary and decimal arithmetic modes.

• Direct addressing for 32,768 bits of read-only memory, 5120 bits of data random-access memory and 32768 bits
of program random-access memory.

• Sixteen 4-bit index registers and a three 12-bit register stack.

INTEL 4004 microcomputer users will have widely differing programming needs. Some users may wish to write a few
short programs, while other users may have extensive programming requirements.

For the user with limited programming needs,two system programs resident on the INTELLEC 4 (Intel’s development
system for the MCS-4 microcomputer) are provided; they are an Assembler and a System Monitor.

Use of the INTELLEC 4 and its system programs is described in the INTELLEC 4 Operator’s Manual.

For the user with extensive programming needs, cross assemblers are available which allow programs to be generated
on a computer having a FORTRAN compiler whose word size is 32 bits or greater, limiting INTELLEC 4 use to final
checkout of programs only.

10.4 Computer Organization

This section provides the programmer with a functional overview of the 4004 computer. Information is presented in
this section at a level that provides a programmer with necessary background in order to write efficient programs.

To the programmer, the computer is represented as consisting of the following parts:

(1) Sixteen working registers which serve as temporary storage for data, and provide the means for addressing mem-
ory.

(2) The accumulator in which data is processed.

(3) Memories which may hold program instructions or data (or sometimes both), and which must be addressed
location by location in order to access stored information.

(4) The stack which is a device used to facilitate execution of subroutines, as described here

(5) Input/Output which is the interface between a program and the outside world.

10.3. Introduction 53



Pyntel4004, Release ENV_VERSION

10.5 Working (Index) Registers

The 4004 provides the programmer with sixteen 4-bit registers.

These may be referenced individually by the integers 0 through 15 , or as 8 register pairs by the even integers from 0
through 14.

The register pairs may also be referenced by the symbols 0P through 7P.

These correspondences are shown as follows:

Individual Registers Register Pairs

Text © intel4004.com

10.6 Accumulator

The accumulator is a special 4-bit register in which data may be transformed by program instructions.

10.7 Memories

10.7.1 Program Random Access Memory (PRAM)

Program random access memory (RAM) is organized exactly like ROM. 4096 locations are always available, which
are used to hold program instructions or data.

Unlike ROM, however, program RAM locations can be altered by program instructions.

54 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

10.7.2 Data Random Access Memory (RAM)

As its name implies, data random access memory (DATA RAM) is used for the temporary storage of data by programs.

The RAM is laid out as shown below:

Data RAM bank organisation

RAM chip organisation

In order to address a 4-bit character of DATA RAM, the programmer first uses a “DCL” instruction to choose one of a
maximum of eight DATA RAM BANKS.

An eight bit address is then sent via an “SRC” instruction which chooses one of four DATA RAM CHIPS within the
DATA RAM BANK, one of four 16-character DATA RAM REGISTERS within the DATA RAM CHIP, and one of 16
4-bit characters within the DATA RAM REGISTER.

Within any particular DATA RAM BANK, then, addresses 0 - 63 indicate which of the 64 directly addressable charac-
ters of DATA RAM CHIP 0 is to be addressed, addresses 64 - 127 correspond to the characters of CHIP 1, addresses
128 - 191 correspond to CHIP 2, and addresses 192 - 255 correspond to CHIP 3.

In addition, each DATA RAM REGISTER has four 4-bit STATUS characters associated with it. These status characters
may be read and written like the data characters, but are accessed by special instructions as described here and here

10.7. Memories 55



Pyntel4004, Release ENV_VERSION

10.7.3 Read-Only Memory (ROM)

Read-only memory (ROM) is used for storing program instructions and constant data which is never changed by the
program.

This is because the program can read locations in ROM, but can never alter (write) ROM locations.

ROM may be visualized as below; as a sequence of bytes, each of which may store 8 bits (two hexadecimal digits).

Up to 4096 bytes of ROM may be present, and an individual byte is addressed by its sequential number between 0 and
4095.

ROM is further divided into pages, each of which contains 256 bytes.

Thus: locations 0 through 255 comprise page 0 of ROM, locations 256 through 511 comprise page 1 and so on.

Note: Instruction Positioning

As described here, certain instructions function differently when located in the last byte (or bytes) of a page than when
located elsewhere.

The 4004 can be used with three different types of memory which have different organizations and characteristics, and
are used for different purposes.

These are :

• ROM (Read Only Memory)

• PRAM (Program Random Access Memory)

• RAM (Data Random Access Memory)

56 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

10.8 The Stack

The stack consists of three 12-bit registers used to hold addresses of program instructions. Since programs are always
run in ROM or program RAM, the stack registers will always refer to ROM locations or program RAM locations.

Stack operations consist of writing an address to the stack, and reading an address from the stack. In order to understand
these operations, it may be helpful to visualize the stack as three registers on the surface of a cylinder, as shown below:

Each stack register is adjacent to the other two stack registers. The 4004 keeps a pointer to the next stack register
available.

10.8.1 Writing An Address To The Stack

To perform a stack write operation;

(1) The address is written into the register indicated by the pointer.

(2) The pointer is advanced to the next sequential register.

Any register may be used to hold the first address written to the stack. More than three addresses may be written to the
stack; however, this will cause a corresponding number of previously stored addresses to be overwritten and lost. This
is illustrated below:

Note:

Storing the fourth address (d) overwrites the first address stored (a).

10.8. The Stack 57



Pyntel4004, Release ENV_VERSION

10.8.2 Reading An Address From The Stack

To perform a stack read operation;

(1) The pointer is backed up one register.

(2) The memory address indicated by the pointer is read.

The address read remains in the stack undisturbed. Thus, if 4 addresses are written to the stack and then three reads
are performed, the stack will appear as below:

The stack is used by programs as described here.

10.9 Input and Output

Programs communicate with the outside world via 4-bit input or output ports. The operation of these ports is controlled
by special I/O instructions described here. These ports are physically located on the same devices which hold ROMs
and DATA RAMs; therefore, they are referred to as ROM ports or RAM ports. These are totally separate from the
instruction or data locations provided in ROM or RAM, and should not be confused with them. The ports associated
with RAMs may be used only for output.

10.10 Computer Program representation in Memory

A computer program consists of a sequence of instructions. Each instruction performs an elementary operation such
as the movement of data, an arithmetic operation on data, or a change in instruction execution sequence. Instructions
are described in groups or individually.

A program will be stored in Read-Only Memory or Program Random Access Memory. It will appear as a sequence
of hexadecimal digits which represent the instructions of the program. The memory address of the instruction being
executed is recorded in a 12-bit register called the Program Counter, and thus it is possible to track a program as
it is being executed. After each instruction is executed, the program counter is advanced to the address of the next
instruction. Program execution proceeds sequentially unless a transfer-of-control instruction (jump or skip) is executed,
which causes the program counter to be set to a specified address. Execution then continues sequentially from this new
address in memory.

Upon examining the contents of a ROM or program RAM memory location, there is no way of telling whether a byte
contains an encoded instruction or constant data. For example, the hexadecimal code F2 has been selected to represent
the instruction IAC (increment accumulator). Thus, the hex value F2 stored in a memory byte could represent either
the instruction IAC or the hex data value F2.

58 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

It is up to the programmer to ensure that data is not misinterpreted as an instruction code, but this is simply done as
follows:

Every program has a starting memory address, which is the memory address of the location holding the first instruction
to be executed. Just before the first instruction is executed, the program counter will automatically be set to this address,
and this procedure will be repeated for every instruction in the program. 4004 instructions may require 8 or 16 bits for
their encoding; in each case the program counter is set to the corresponding address as shown in the diagram below.

In order to avoid errors, the programmer must be sure that a byte of constant data does not follow an instruction when
another instruction is expected. Referring to the diagram, an instruction is expected in location 0x13F, since instruction
4 is to be executed after instruction 3.

If location 0x13F held constant data, the program would not execute correctly. Therefore, when writing a program, do
not place constant data in between adjacent instructions that are to be executed consecutively.

A class of instructions (referred to as transfer-of-control instructions) causes program execution to branch to an in-
struction other than the next sequential instruction. The memory address specified by the transfer of control instruction
must be the address of another instruction; if it is the address of a memory location holding data, the program will
not execute correctly. For example, referring to the diagram below, suppose instruction 2 specifies a jump to location
0x140 and instructions 3 and 4 were replaced by data. Then following execution of instruction 2, the program counter
would be set to 0x140 and the program would execute correctly. But if, in error, instruction 2 were to specify a jump to
0x13E, an error would result since this location now holds data. Even if instructions 3 and 4 were not altered, a jump
to location 0x13E would cause an error, since this is not the first byte of the instruction.

Upon reading the instruction summary, you will see that it is easy to avoid writing an assembly language program with
jump instructions which have erroneous memory addresses. Information on this subject is given here rather to help the
programmer who is debugging programs by entering hexadecimal codes directly into program RAM

Note: Programs usually exist in ROM, and therefore cannot be altered in this manner.

10.10. Computer Program representation in Memory 59



Pyntel4004, Release ENV_VERSION

10.11 Memory Addressing

10.11.1 Direct Addressing

With direct addressing, as the name implies, an instruction provides an exact memory address. The following instruction
provides an example of direct addressing:

Jump to location 3A2

This instruction is represented by 4 hexadecimal digits in RQM or program RAM. The first digit is a 4, signifying a
jump instruction, while the final 3 digits specify the address.

This instruction would appear in memory as follows:

10.11.2 Same Page Addressing

Some instructions supply two hexadecimal digits which replace the lowest 8 bits of the program counter, addressing a
ROM or program RAM location on the same page as the instruction being executed.

Note: (Two addresses are on the same page if the highest order hexadecimal digit of their addresses are equal. See
Section 2.3.1)

The following instruction provides an example of same page addressing:

Jump on condition 2 to location 0F of this page

60 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

This instruction would appear in memory as follows:

The identical instruction encoding 0x120F, if located at location 0x501, would cause a jump to memory address 0x50F.

10.11.3 Indirect Addressing

With indirect addressing, an instruction specifies a register pair which in turn holds an 8 bit value used for same page
addressing (Section 2. 7.2). Suppose that registers 4 and 5 hold the 4-bit hexadecimal numbers 1 and B, respectively.
Then the instruction:

Jump indirect to contents of register pair 4

This instruction would appear in memory as follows:

The 3 indicates a “jump indirect” instruction; the 5 indicates that the address indicated on this page is held in register
pair 4. If register pair 4 had held the hex numbers 3 and C, a jump to location 0x23C would have occurred.

10.11. Memory Addressing 61



Pyntel4004, Release ENV_VERSION

10.11.4 Immediate Addressing

An immediate instruction is one that provides its own data. The following is an example of immediate addressing

Load the accumulator with the hexadecimal number 3

This instruction would appear in memory as follows:

The digit D signifies a “load accumulator immediate” instruction; the digit 3 is the number to be loaded.

10.11.5 Program RAM Addressing

When a program stores an 8 bit value into a program RAM location, a special sequence of instructions using the WPM
instruction.

10.11.6 Data RAM Addressing

To address a location in DATA RAM, the DCL and SRC instructions must be used as described here.

When the DCL has chosen a specific DATA RAM bank, the address of the specific character is held in a register pair
accessed by the SRC instruction.

10.11.7 Subroutines and use of the Stack for Addressing

Before understanding the purpose or effectiveness of the stack, it is necessary to understand the concept of a subroutine.

Consider a frequently used operation such as addition.

The 4004 provides instructions to add one character of data to another, but what if there was a requirement to add
numbers outside the range of 0 to 15 (the range of one character)? Such addition will require a number of instructions
to be executed in sequence. It is quite possible that this addition routine may be required many times within one
program; to repeat the identical code every time it is needed is possible, but very wasteful of memory:

62 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

A more efficient means of accessing the addition routine would be to store it once, and find a way of accessing it when
needed:

A frequently accessed routine such as the addition above is called a subroutine, and the 4004 provides instructions that
call subroutines and return from subroutines.

When a subroutine is executed, the sequence of events may be depicted as follows:

The arrows indicate the execution sequence.

When the” Call” instruction is executed, the address of the “next” instruction is written to the stack (see Section 2.4), and
the subroutine is executed. The last executed instruction of a subroutine will always be a special “Return Instruction”,

10.11. Memory Addressing 63



Pyntel4004, Release ENV_VERSION

which reads an address from the stack into the program counter, and thus causes program execution to continue at the
“Next” instruction as illustrated below:

Since the stack provides three registers, subroutines may be nested up to three deep; for example, the addition subroutine
could itself call some other subroutine and so on. An examination of the sequence of write and read stack operations
will show that the return path will always be identical to the call path, even if the same subroutine is called at more
than one level; however, an attempt to nest subroutines to a depth of more than 3 will cause the program to fail, since
some addresses will have been overwritten.

Addressing specific memory bytes constitutes an important part of any computer program. There are a number of ways
in which this can be done, as described below

• Direct Addressing

• Same Page Addressing

• Indirect Addressing

• Immediate Addressing

• Program RAM Addressing

• Data RAM Addressing

• Subroutines and the use of the stack for Addressing

64 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

10.12 Carry Bit

To make programming easier, a carry bit is provided by the 4004 to reflect the results of data operations. The de-
scriptions of individual instructions specify which instructions affect the carry bit and whether the execution of the
instruction is dependent in any way on the prior status of the carry bit.

The carry bit is “set” if 1 and “reset” if 0.

Certain data operations can cause an overflow out of the high-order 3-bit. For example, addition of two hexadecimal
digits can give rise to an answer that does not fit in one digit:

3 2 1 0 Bit number

A 1 0 1 0
+ 7 0 1 1 1

-------
1 0 0 0 1

carry

An operation that results in a carry out of bit 3 will set the carry bit. An operation that could have resulted·in a carry
out of bit 3 but did not will reset the carry bit.

10.13 The 4004 Instruction Set

10.13.1 How Assembly Language is Used

Upon examining the contents of read-only memory or program random-access memory, a program would appear as a
sequence of hexaaecimal digits which are interpreted by the machine as instruction codes, addresses, or constant data.
It is possible to write a program as a sequence of digits (just as they appear in memory), but that is slow and expensive.

10.12. Carry Bit 65



Pyntel4004, Release ENV_VERSION

For example, in the example to the right, several instructions reference memory to address another instructions.

The example program works as follows:

• Byte 0x332 specifies that the accumulator and carry bit are to be cleared.

• Bytes 0x333 and 0x334 specify that program execution is to continue at location 0x356.

• Byte 0x356 specifies that register 0 is to be incremented.

Now suppose that an error discovered in the program logic necessitates placing a new instruction after byte 0x332.
Program code would have to change as follows:

Many instructions have been moved and as a result some must be changed to reflect the new addresses of instructions.
The potential for making mistakes is very high and is aggravated by the complete unreadability of the program.

Writing programs in assembly language is the first and most significant step towards economical programming; it
provides a readable notation for instructions, and separates the programmer from a need to know or specify absolute
memory addresses.

Assembly language programs are written as a sequence of instructions which are converted to executable hexadecimal
code by a special program called an Assembler

As illustrated above, the assembly language program generated by a programmer is called a SOURCE PROGRAM.
The assembler converts the SOURCE PROGRAM into an equivalent OBJECT PROGRAM, which consists of a
sequence of hexadecimal codes that can be loaded into ROM or program RAM and executed.

For example:

66 Chapter 10. MCS-4 Assembly Language Programming Manual

https://en.wikipedia.org/wiki/Assembly_language#Assembler


Pyntel4004, Release ENV_VERSION

If a new instruction must be added, only one change is required. Even the reader who is not yet familiar with assembly
language will see how simple the addition is:

The assembler takes care of the fact that a new instruction will shift the rest of the program in memory.

10.13.2 Statement Mnemonics

Assembly language instructions must adhere to a fixed set of rules as described here. An instruction has four separate
and distinct parts or FIELDS.

10.13. The 4004 Instruction Set 67



Pyntel4004, Release ENV_VERSION

Field Name Description
1 LA-

BEL
It is the instruction location’s label or name, and it is used to reference the instruction.

2 CODE It defines the operation that is to be performed by the instruction.
3 OPERANDIt provides any address or data information needed by the CODE field.
4 COM-

MENT
It is present for the programmer’s convenience and is ignored by the assembler. The programmer
uses comment fields to describe the operation and thus make the program more readable.

The assembler uses free fields; that is, any number of blanks may separate fields.

Some examples are shown below:

CMI CLB / Clear accumulator and carry

LAB, INC 3 / Increment register 3

JUN CMI / Jump to instruction labelled "CMI"

FCH, FIM 0P 255 / Load 0xFF (decimal 255) into register pair 0

10.13.3 Label Field

This is an optional field. If present, it must start with a letter of the alphabet. The remaining characters may be letters
or decimal digits. The label field must end with a comma, immediately following the last character of the label. Labels
may be any length, but should be unique in the first three characters; the assembler cannot always distinguish between
labels whose first three characters are identical. If no label is present, at least one blank must begin the line.

Some examples of legal label field values are:

CM0,
NUL,
EGO,

Some examples of illegal label field values are:

4GE, / Does not begin with a letter
AGE / Valid characters, but does not end with a comma
A/A, / Contains invalid characters

The following label has more than 3 characters:

STROB,

Whilst this is legal, care must be taken not to have more than one label with the first 3 characters identical.

For example, the following labels are indistinguishable from one another and will result in unpredictable behaviour:

LABEL,
LAB2,
LAB6
LABEL29,

Since labels serve as instruction addresses, they cannot be duplicated. For example, the sequence:

68 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

NOW, JUN NXT
---
---
---

NXT, INC 2
---
---

NXT, CLB

is ambiguous; the assembler cannot detennine which NXT address is referenced by the JUN instruction.

10.13.4 Code Field

This field contains a code which identifies the machine operation (add, subtract, jump, etc.) to be performed: hence the
term operation code or op-code. The instructions described in Sections 3. 3 thru 3.11, are each identified by a mnemonic
label which must appear in the code field. For example, since the “jump unconditionally” instruction is identified by
the letters “JUN”, these letters must appear in the code field to identify the instruction as “jump unconditionally”.

There must be at least one space following the code field. Thus:

LAB, JUN AWY

is legal, but

LAB, JUNAWY

is illegal.

10.13.5 Operand Field

This field contains information used in conjunction with the code field to define precisely the operation to be performed
by the instruction. Depending upon the code field, the operand field may be absent or may consist of one item or two
items separated by blanks.

There are five types of information [(a) through (e) below] that may be requested as items of an operand field, and the
information may be specified in five ways [(1) through (5) below].

The five ways of specifying information are as follows:

(1) A Decimal number

Example:

ABC, LDM 14 / Load accumulator with decimal 14 (1100b).

10.13. The 4004 Instruction Set 69



Pyntel4004, Release ENV_VERSION

(2) The current program counter. This is specified by the character * and is equal to the address of
the first byte of the currrent instruction.

Example:

GO, LDM *+6 / If the instruction above is being assembled at
/ location 213, it will cause program control to
/ be transferred to address 219.

(3) Labels that have been assigned a decimal number by the assembler (the equate instruction).

Example:

Suppose label VAL has been equated to the number 42, and ZER has been equated to the number 0. Then the following
instructions all load register pair zero with the hexadecimal value 2A (decimal 42):

A1, FIM 0 42
A2, FIM ZER 42
A3, FIM ZER VAL

(4) Labels that appear in the label field of another instruction.

Example:

LP1, JUN LP2 / Jump to label LP2
---
---
---

LP2, CMA

(5) Arithmetic expressions involving data types (1) to (4) above connected by the operators + (addi-
tion) and - (subtraction). These operators treat their arguments as 12-bit quantities, and generate
12-bit quantities as their result. If a value is generated which exceeds the number of bits available
for it in an instruction, the value is truncated on the left.

For example, if VAL refers to hexadecimal address 0xFFE, the instruction:

JUN VAL

is encoded as 0x4FFE; a 4-bit operation code and 12 bit value.

However, the instruction:

JUN VAL + 9

will be encoded as 0x4007, where the value 0x007 has been truncated on the left to 12 bits (three hex digits) giving a
value o 0x007.

Using some or all of the above data specifications, the following five types of information may be requested:

70 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

(a) A register to serve as the source or destination in a data operation. Methods 1, 3, or 5 may be
used to specify the register, but the specification must finally evaluate to one of the decimal numbers
0 to 15.

Example:

I1, INC 4
I2, INC R4
I3, INC 16 - 12

Assuming R4 has been equated to 4, then the above instructions will ALL increment register 4.

(b) A register pair to serve as the source or destination in a data operation. The specification must
evaluate to one of the even decimal numbers from 0 through 14 (corresponding to register pair
designators 0P through 7P).

Example:

I1, SRC 1P
I2, INC 2
I3, INC RG2

Assuming label RG2 has been equated to 2, then the above instructions will ALL increment register pair 2 (i.e. registers
2 and 3).

(c) Immediate data, to be used directly as a data item.

Example:

AC1, DATA / Load the value of DATA into the accumulator

The value of DATA could be one of the following forms:

19
12 + 72 -3
VAL / Where VAL has been equated to a number

(d) A 12 bit address, or the label of another location in memory.

Example:

HR, JUN OVR / Jump to instruction at OVR.
JUN 513 / Jump to hex address 201 (decimal 513).

10.13. The 4004 Instruction Set 71



Pyntel4004, Release ENV_VERSION

(e) A condition code for use by the JCN (jump on condition) instruction. This must evaluate to a
number from 0 to 15.

Example:

JCN 4 LOC
JCN 2+2 LOC

The above instructions cause program control to be transferred to address LOC if condition 4 (accumulator zero) is
true.

10.13.6 Comment Field

The only rule governing this field is that it must begin with a slash (/). It is terminated by the end of the line. A comment
field may appear alone on a line:

LOC, CLB /This is a comment
/This is a comment line

For the reader who understands assembly language, refer to the summary of the 4004 instruction set.

For the reader who is not completely familiar with assembly language, refer to the individual instructions with examples
and machine code equivalents.

More detailled information is contained within the sections below:

• How Assembly Language is Used

• Statement Mnemonics

• Label Field

• Code Field

• Operand Field

• Comment Field

10.14 Data Statements

Any 4 bit character in DATA RAM contains one of the 16 possible combinations of zeros and ones. Arithmetic in-
structions assume that the DATA RAM characters upon which they operate are in a special format called “two’s com-
plement”, and the operations performed on these bytes are called “two’s complement arithmetic” •

72 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

Two’s Complement

When a character is interpreted as a signed two’s complement number, the low order 3 bits supply the magnitude of
the number, while the high order bit is interpreted as the sign of the number (0 for positive numbers, 1 for negative).

The range of positive numbers that can be represented in signed two’s complement notation is, therefore, from 0 to 7:

Decimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

To change the sign of a number represented in two’s complement, the following rules are applied:

1. Invert each bit of the number (producing the so-called one’s complement).

2. Add one to the result, ignoring any carry out of the high order bit position.

Example 1:

Produce the two’s complement representation of -6 . Following the rules above:

+ 6 = 0 1 1 0
Invert each bit = 1 0 0 1
Add 1 = 1 0 1 0

Therefore, the two’ s complement representation of -6 is the hexadecimal number ‘0x0A’. (Note that the sign bit is set,
indicating a negative number.)

Example 2:

To interpret the value 0x0C as a signed two’s complement number:

• The high order bit is set, indicating that this is a negative number.

• To obtain its value, again invert each bit and add one.

This is equivalent to subtracting one f:um the number and inverting each bit.

C = 1 1 0 0
Invert each bit = 0 0 1 1
Add 1 = 0 1 0 0

Thus, the value of 0x0C is - 4.

The range of negative numbers that can be represented in signed two’s complement notation is, therefore, from -1 to
-8:

10.14. Data Statements 73



Pyntel4004, Release ENV_VERSION

Decimal Binary
-1 1111
-2 1110
-3 1101
-4 1100
-5 1011
-6 1010
-7 1001
-8 1000

To perform the subtraction 6 - 3, the following operations are performed:

- Take the two's complement of 3 = 1 1 0 1
- Add the result to the minuend:

6 = 0 1 1 0
+ (-3) = 1 1 0 1

-------
0 0 1 1 = 3

When a data character is interpreted as an unsigned two’s complement number, its value is considered positive and in
the range 0 to 15.

Decimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Two’s complement arithmetic is still valid. When performing an addition operation, the carry bit is set when the result
is greater than 15. When performing subtraction, the carry bit is set when the result is positive. If the carry bit is reset,
the result is negative and present in its two’s complement form.

Example 1:

Subtract 3 from 10 using unsigned two’s complement arithmetic.

10 = 1 0 1 0
-3 = 1 1 0 1

-------
1 0 1 1 1

(continues on next page)

74 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

(continued from previous page)

carry

Since the carry bit is **set**, the result is correct and positive

Example 2:

Subtract 15 from 12 using unsigned two’s complement arithmetic.

12 = 1 1 0 0
-15 = 0 0 0 1

-------
0 1 1 0 1 = -3

carry

Since the carry bit is **reset**, the result is negative and in its two's compliment␣
→˓form.

To summarise Two’s complement, below is a number line showing all the 4-bit representations from +7 to -8.

Decimal Binary
7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
0 0000
-1 1111
-2 1110
-3 1101
-4 1100
-5 1011
-6 1010
-7 1001
-8 1000

Why two’s complement ?
Using two’s complement notation for negative numbers, any subtraction problem becomes a sequence of bit inversions
and additions. Therefore, fewer circuits are needed to perform subtraction.

10.14. Data Statements 75



Pyntel4004, Release ENV_VERSION

10.15 Constant Data

Eight-bit data values can be assembled into ROM or program RAM locations by writing a blank code field and an
operand field beginning with a positive number. If the operand is greater than 8 bits, it will be truncated on the left.

Example:

Assume that a label VAL has been equated to 14, and the label LOC appears on an instruction assembled at location
0x034B

Assembled Data

LDM 0 / Statement for context
C1, 0 + VAL 0x0E
C2, 4095 0xFF
C3, 0 + LOC 0x4B

The following are invalid data statements

LDM 0 / Statement for context
C4, ABC / Does not begin with a number
C5, -18 / Number is not positive

10.16 Instruction Summary

10.16.1 Index Register Instructions

76 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

FIN

Name Fetch Indirect from ROM
Function 8 bits of immediate data are loaded into the register pair specified by RP.
Syntax FIN RPp
Assembled
Binary 0010RRR0
Decimal 48, then incrementing by 2 until 62 (1st word)
Hexadecimal 0x30, then incrementing by 2 until 0x3E (1st word)

Symbolic
Execution 1 word, 8-bit code but with an execution time of 21.6 𝜇 sec
Side-effects Not Applicable, unless RP0 is the designated target register pair, in which case, RP0

will contain the data at the memory location referenced by RP0 at the start of the
instruction

Implemented fin

Detailed Description

The contents of registers 0 and 1 are concatenated to form the lower 8 bits of a ROM or program RAM address. The
upper 4 bits of the address are assumed equal to the upper 4 bits of the address at which the FIN instruction is located
(that is, the address of the FIN instruction and the address referenced by registers 0 and 1 are on the same page). The
8 bits at the designated address are loaded into the register pair specified by RP. The 8 bits at the designated address
are unaffected; the contents of registers 0 and 1 are unaffected unless RP = O.

The carry bit is not affected.

The target register pair is defined as part of the opcode as detailed below.

10.16. Instruction Summary 77

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L389


Pyntel4004, Release ENV_VERSION

Example program

/ Example program
org ram
fin 7p
end

(Assume that address 0x25B contains the data 0x6E (spread over 2 words)).

If register 0 contains 0x5 and register 1 contains 0xB, when the FIN instruction is executed, the 8 bits located at hex
address 0x25B will be loaded into register pair 7P. Thus register 14 will contain 0x6, and register 15 will contain 0xE.

Notes

If a FIN instruction is located in the last location of a page, the upper 4 bits of the designated address will be assumed
equal to the upper 4 bits of the next page.

Thus if the instruction:

fin 7p

is located at decimal address 511 (0x1FF) and registers 0 and 1 contain 3 and 0xC, the 8 bits at address 0x23C (not
0x13C) will be loaded into registers 14 and 15.

This is dangerous programming practice and should be avoided whenever possible.

INC

Name Increment Register
Function Increments a specified register by 1.
Syntax INC(R)
Assembled
Binary 0110RRRR
Decimal 96, then incrementing by 1 until 111
Hexadecimal 0x60, then incrementing by 1 until 0x6F

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Not Applicable
Implemented inc

78 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Detailed Description

The address contained within the specified register pair designates either a particular DATA RAM data character, a
DATA RAM status character, a RAM output port, or a ROM input/output port. However, the address designates all of
these simultaneously; it is up to the programmer to then write the correct I/O or RAM instruction to access the proper
entity.

The disassembly of the instruction below shows how the register pair are represented in the opcode.

The register specified in the lower 4 bits of the instruction is incremented by 1. The carry bit will remain unchanged.
If the register specified contains a value of 0b1111 and an INC instruction is applied, the register will contain a value
of 0b0000, but the carry bit will remain unchanged

Example program

/ Example program
/ Loads the Accumulator with a value of 2
/ places that value in Register 6
/ increments Register 6
/ Register 6 contains a value of 3

org ram
ld 2
xch 6
inc 6
end

The index register instructions involve index registers or register pairs.

These instructions occupy one byte as follows:

10.16. Instruction Summary 79



Pyntel4004, Release ENV_VERSION

FIN INC

Code Description
FIN Load RP with 8 bits of ROM data addressed by register pair 0.
INC Increment register REG.

10.16.2 Index Register To Accumulator Instructions

ADD

Name Add register to accumulator with carry
Function Add a value from a specified register to the accumulator, respecting the carry flag.
Syntax ADD R
Assembled
Binary 1000 R
Decimal 128, then incrementing by 1 until 143
Hexadecimal 0x80, then incrementing by 1 until 0x8F

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.8 𝜇 sec
Side-effects Depending on the result, the carry bit is reset or set.
Implemented add

80 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Detailed Description

The 4 bit content of the designated index register is added to the content of the accumulator with carry. The result is
stored in the accumulator. The carry/link is set to 1 if a sum greater than 15 was generated to indicate a carry out;
otherwise, the carry/link is set to 0. The 4 bit content of the index register is unaffected.

Example programs

/ Example program 1
org ram
ldm 9
xch 12
ldm 6
clc
add 12
end

In this example, the accumulator contains a value of 6, register 12 contains a value of 9, and the carry bit is 0.

Performing an ADD 12 (add the value of the accumulator to that in register 12) does the following:

Accumulator = 0 1 1 0
Register 12 = 1 0 0 1
Carry = 0

---------
Result 0 1 1 1 1

Carry

The accumulator contains 15 and the carry bit is reset.

10.16. Instruction Summary 81



Pyntel4004, Release ENV_VERSION

/ Example program 2
org ram
ldm 9
xch 12
ldm 6
stc
add 12
end

In this example, the accumulator contains a value of 6, register 12 contains a value of 9, and the carry bit is 1 - note the
STC instruction replacing the CLC instruction.

Performing an ADD 12 (add the value of the accumulator to that in register 12) does the following:

Accumulator = 0 1 1 0
Register 12 = 1 0 0 1
Carry = 1

---------
Result 1 0 0 0 0

Carry

The accumulator contains 0 and the carry bit is set.

SUB

Name Subtract index register from accumulator with borrow
Function Subtract a value in an index register from the accumulator, respecting the carry flag.
Syntax SUB R
Assembled
Binary 1001 R
Decimal 144, then incrementing by 1 until 159
Hexadecimal 0x90, then incrementing by 1 until 0x9F

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.8 𝜇 sec
Side-effects Depending on the result, the carry bit is reset or set.
Implemented sub

Detailed Description

The contents of index register R are subtracted with borrow from the accumulator. The result is kept in the accumulator;
the contents of R are unchanged. A borrow from the previous subtraction is indicated by the carry bit being equal to
one at the beginning of this instruction. If the carry bit equals zero at the beginning of this instruction it is assumed
that no borrow occurred from the previous subtraction.

This instruction sets the carry bit if there is no borrow out of the high order bit position, and resets the carry bit if there
is a borrow.

82 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

The subtract with borrow operation is actually performed by complementing each bit of the contents of R and adding
the resulting value plus the complement of the carry bit to the accumulator.

Notes

This instruction may be used to subtract numbers greater than 4 bits in length. The carry bit must be complemented by
the program between each required subtraction operation. For an example of this, see “Decimal Subtraction”:.

The disassembly of the instruction below shows how the register is represented in the opcode:

Example programs

In order to perform a normal subtraction, the carry bit should be zero. If the accumulator contains 6, register 10 contains
2, and the carry bit is zero.

This is the set-up for the operation 6 - 2, giving the answer 4 in the accumulator.

/ Example program 1
org ram
ldm 2
xch 10
ldm 6
clc
sub 10
end

The sub operation above is carried out as follows:

Accumulator = 0 1 1 0
~ Register 10 = 1 1 0 1 ( register 10 = 0 0 1 0)
~ Carry = 1 ( carry = 0)

(continues on next page)

10.16. Instruction Summary 83



Pyntel4004, Release ENV_VERSION

(continued from previous page)

---------
Result 1 0 1 0 0

Carry indicates no borrow

The accumulator contains 4 and the carry bit is reset.

In this second example, if the accumulator contains 6, register 10 contains 2, and the carry bit is one:

/ Example program 2
org ram
ldm 2
xch 10
ldm 6
stc
sub 10
end

The sub operation above is carried out as follows:

Accumulator = 0 1 1 0
~ Register 10 = 1 1 0 1 ( register 10 = 0 0 1 0)
~ Carry = 0 ( carry = 1)

---------
Result 1 0 0 1 1

Carry indicates no borrow

The accumulator contains 3 and the carry bit is reset.

LD

Name Load index register to Accumulator
Function The 4 bit content of the designated index register (RRRR) is loaded into accumulator.

The previous contents of the accumulator are lost. The 4 bit content of the index
register and the carry/link bit are unaffected..

Syntax LD(R)
Assembled
Binary 1010 RRRR
Decimal 160, then incrementing by 1 until 175 (1st word).
Hexadecimal 0xA0, then incrementing by 1 until 0xAF (1st word).

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Not Applicable
Implemented ld

84 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Detailed Description

The contents of REG are stored into the accumulator, replacing the previous contents of the accumulator. The contents
of REG are unchanged.

The carry bit and the accumulator are not affected.

Example program

The example program will load the contents of register 11 into the accumulator.

If register 11 contains the value 9 (1001b), then after this program is executed, the accumulator will contain 9 also.

/ Example program
LD 11
END

10.16. Instruction Summary 85



Pyntel4004, Release ENV_VERSION

XCH

Name Exchange index register and accumulator
Function The contents of the register specified by REG are exchanged with the contents of the

accumulator. The carry bit is not affected.
Syntax XCH(R)
Assembled
Binary 1011 RRRR
Decimal 176, then incrementing by 1 until 191 (1st word).
Hexadecimal 0xB0, then incrementing by 1 until 0xBF (1st word).

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Not Applicable
Implemented xch

Detailed Description

The contents of the register specified by REG are exchanged with the contents of the accumulator. The carry bit is not
affected.

86 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Example program

If the accumulator contains 1100 and register 0 contains 0011 then the instruction XCH 0 will cause the accumulator
to contain 0011 and register 0 to contain 1100.

/ Example program
XCH 0
END

Note

ACBR is the Accumulator Buffer Register (4-bit)
This section describes instructions which involve an operation between an index register and the accumulator.

Instructions in this class occupy one byte as follows:

Code Description
ADD Add REG plus carry bit to the accumulator.
SUB Subtract REG from accumulator with borrow.
LD Load accumulator from REG.
XCH Exchange the contents of accumulator and REG.

10.16. Instruction Summary 87



Pyntel4004, Release ENV_VERSION

10.16.3 Accumulator Instructions

CLB

Name Clear Both
Function Clear both the accumulator and carry bit
Syntax CLB
Assembled
Binary 11110000
Decimal 240
Hexadecimal 0xF0

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Carry bit and Accumulator are zeroed
Implemented clb

Detailed Description

The accumulator is set to 0 and the carry bit is reset.

The opcode for this instruction does not contain any additional data:

CLC

Name Clear Carry
Function Clear the carry bit
Syntax CLC
Assembled
Binary 11110001
Decimal 241
Hexadecimal 0xF1

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Carry bit is reset
Implemented clc

88 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208
https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Detailed Description

The carry bit is reset.

The opcode for this instruction does not contain any additional data:

IAC

Name Increment accumulator
Function The content of the accumulator is incremented by 1.
Syntax IAC
Assembled
Binary 11110010
Decimal 242
Hexadecimal 0xF2

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.8 𝜇 sec
Side-effects No overflow sets the carry/link to 0; Overflow sets the carry/link to a 1.
Implemented iac

Detailed Description

The contents of the accumulator are incremented by one. The carry bit is set if there is a carry out of the high order bit
position, and reset if there is no carry.

The opcode for this instruction does not contain any additional data:

Examples

Example 1

If the accumulator contains 9, then the IAC operation will be as follows:

Accumulator = 1 0 0 1
+ 1

---------
Result 0 1 0 1 0

Carry

Example 2

If the accumulator contains 15, then the IAC operation will be as follows:

10.16. Instruction Summary 89

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Accumulator = 1 1 1 1
+ 1

---------
Result 1 0 0 0 0

Carry

CMC

Name Complement Carry
Function The carry/link content is complemented.
Syntax CMC
Assembled
Binary 11110011
Decimal 243
Hexadecimal 0xF3

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Carry bit is complemented
Implemented cmc

Detailed Description

The contents of the carry is complemented, i.e. if the carry bit is 1, it is set to zero. If it is zero, it is set to 1.

The opcode for this instruction does not contain any additional data:

CMA

Name Complement Accumulator
Function Perform one’s complement on the accumulator
Syntax CMA
Assembled
Binary 11110100
Decimal 244
Hexadecimal 0xF4

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects N/A
Implemented cma

90 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208
https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Detailed Description

The contents of the carry is complemented, i.e. if the carry bit is 1, it is set to zero. If it is zero, it is set to 1.

The opcode for this instruction does not contain any additional data:

RAL

Name Rotate Accumulator left through Carry
Function The content of the accumulator and carry/link are rotated left.
Syntax RAL
Assembled
Binary 11110101
Decimal 245
Hexadecimal 0xF5

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects As described
Implemented ral

Detailed Description

The contents of the accumulator are rotated one bit position to the left.

The high-order bit of the accumulator replaces the carry bit, while the carry bit replaces the low-order bit of the
accumulator as shown in the example below:

The opcode for this instruction does not contain any additional data:

10.16. Instruction Summary 91

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

RAR

Name Rotate Accumulator right through Carry
Function The content of the accumulator and carry/link are rotated right.
Syntax RAR
Assembled
Binary 11110110
Decimal 246
Hexadecimal 0xF6

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects As described
Implemented rar

Detailed Description

The contents of the accumulator are rotated one bit position to the right.

The low-order bit of the accumulator replaces the carry bit, while the carry bit replaces the high-order bit of the
accumulator.

The opcode for this instruction does not contain any additional data:

92 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

TCC

Name Transmit Carry and Clear
Function The accumulator is cleared. The least significant position of the accumulator is set to

the value of the carry/link. The carry/link is set to 0.
Syntax TCC
Assembled
Binary 11110111
Decimal 247
Hexadecimal 0xF7

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Carry bit is reset
Implemented tcc

Detailed Description

If the carry bit is zero, the accumulator is set to 0000. If the carry bit is one, the accumulator is set to 0001.

In either case, the carry bit is then reset.

The opcode for this instruction does not contain any additional data:

DAC

Name Decrement accumulator
Function The content of the accumulator is decremented by 1.
Syntax DAC
Assembled
Binary 11111000
Decimal 248
Hexadecimal 0xF8

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.8 𝜇 sec
Side-effects No borrow sets the carry/link to 1; Borrow sets the carry/link to a 0.
Implemented iac

10.16. Instruction Summary 93

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208
https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Detailed Description

The contents of the accumulator are decremented by one. The carry bit is set if there is no borrow out of the high-order
bit position, and reset if there is a borrow.

Note

Subtracting a number is carried out using the complement of the number and adding. Therefore subtracting 1 becomes
adding -1.

The opcode for this instruction does not contain any additional data:

Examples

Example 1

If the accumulator contains 9, then the DAC operation will be as follows:

Accumulator = 1 0 0 1
+ (-1) 1 1 1 1

---------
Result 1 1 0 0 0

Carry (indicating no borrow)

Example 2

If the accumulator contains 0, then the DAC operation will be as follows:

Accumulator = 0 0 0 0
+ (-1) 1 1 1 1

---------
Result 0 1 1 1 1

Carry (indicating a borrow)

TCS

94 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

Name Transmit Carry and Subtract
Function The accumulator is set to 9 if the carry/link is 0. The accumulator is set to 10 if the

carry/link is a 1. The carry/link is set to 0.
Syntax TCS
Assembled
Binary 11111001
Decimal 249
Hexadecimal 0xF9

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Carry bit is reset
Implemented tcs

Detailed Description

If the carry bit = 0, the accumulator is set to 9. If the carry bit = 1, the accumulator is set to 10.

In either case, the carry bit is then reset.

The opcode for this instruction does not contain any additional data:

This instruction is used when subtracting decimal numbers greater than 4 bits in length. For an example of this, see
here

STC

Name Set Carry
Function Set the carry bit
Syntax STC
Assembled
Binary 11111010
Decimal 250
Hexadecimal 0xFA

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Carry bit is set
Implemented stc

10.16. Instruction Summary 95

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208
https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Detailed Description

The carry bit is set.

The opcode for this instruction does not contain any additional data:

DAA

Name Decimal Adjust Accumulator
Function If the contents of the accumulator are greater than 9, or if the carry bit = 1, the accu-

mulator is incremented by 6. Otherwise, the accumulator is not affected.
Syntax DAA
Assembled
Binary 11111011
Decimal 251
Hexadecimal 0xFB

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects As Described
Implemented daa

Detailed Description

If the contents of the accumulator are greater than 9, or if the carry bit = 1, the accumulator is incremented by 6.

Otherwise, the accumulator is not affected.

If the result of incrementing the accumulator produces a carry out of the high order bit position, the cary bit is set.

Otherwise the carry bit is unaffected (in particular it is not reset).

Notes

This instruction is used when adding decimal numbers. For an example of this see Decimal Addition:

The opcode for this instruction does not contain any additional data:

96 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

KBP

Name Keyboard Process
Function If the accumulator contains OOOOB, it remains unchanged. If one bit of the accumu-

lator is set, the accumulator is set to a number from 1 to 4 indicating which bit was
set.

Syntax KBP
Assembled
Binary 11111100
Decimal 252
Hexadecimal 0xFC

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Not Applicable
Implemented kbp

Detailed Description

A code conversion is performed on the accumulator content, from 1 out of n to binary code. If the accumulator content
has more than one bit on, the accumulator will be set to 15 (to indicate error). The carry/link is unaffected.

The conversion table is shown below:

Accumulator before KBP Accumulator after KBP
0000 0000
0001 0001
0010 0010
0100 0011
1000 0100
0011 1111
0101 1111
0110 1111
0111 1111
1001 1111
1010 1111
1011 1111
1100 1111
1101 1111
1110 1111
1111 1111

The opcode for this instruction does not contain any additional data:

Accumulator instructions operate only on the contents of the accumulator and/or the carry bit. Instructions in this class
occupy one byte as follows:

10.16. Instruction Summary 97

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Code Description
CLB Clear both the accumulator and carry.
CLC Clear carry.
IAC Increment accumulator.
CMC Complement carry.
CMA Complement each bit of the accumulator.
RAL Rotate accumulator left through carry.
RAR Rotate accumulator right through carry.
TCC Transmit the value of the carry to the accumulator then clear carry.
DAC Decrement accumulator.
TCS Adjust accumulator for decimal subtract.
STC Set carry.
DAA Adjust accumulator for decimal add.
KBP Convert accumulator from 1 of n code to a binary value.

10.16.4 Immediate Instructions

FIM

Name Fetch Immediate
Function 8 bits of immediate data are loaded into the register pair specified by RP.
Syntax FIM RPp Data
Assembled
Binary 0010RRR0 DDDDDDDD
Decimal 32, then incrementing by 2 until 46 (1st word)
Hexadecimal 0x20, then incrementing by 2 until 0x2E (1st word)

Symbolic
Execution 2 words, 8-bit code and an execution time of 21.6 𝜇 sec
Side-effects Not Applicable
Implemented fim

98 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L389


Pyntel4004, Release ENV_VERSION

Detailed Description

The 8 bits of immediate data (word 2) are loaded into the named register pair. The register pairs are defined within the
opcode as shown below:

Example program

/ Example program
org ram
fim 2 254
end

This will load the 8-bit decimal value 254 into the register pair 2 & 3.

After execution, register 2 will contain the upper 4 bits of the value 254, with register 3 containing the lower 4 bits i.e.
15 and 14 respectively.

This is because decimal 254 is represented as 0xFE, so register 2 will contain 0xF (decimal 15), while register 3 will
contain 0xE (decimal 14).

10.16. Instruction Summary 99



Pyntel4004, Release ENV_VERSION

LDM

Name Branch Back and Load
Function The 4 bits of immediate data encoded in the instruction are loaded into the accumuator,

then execution continues with the most recent address on the stack. contents of the
accumulator. The carry bit is not affected.

Syntax LDM(D)
Assembled
Binary 1100 DDDD
Decimal 208, then incrementing by 1 until 223 (1st word).
Hexadecimal 0xD0, then incrementing by 1 until 0xDF (1st word).

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Not Applicable
Implemented ldm

Detailed Description

The 4 bits of immediate data are loaded into the accumulator.

The carry bit is not affected.

Example Program

/ Example program
ldm 0
ldm 9
ldm 15
end

The above program will first clear the accumulator (setting all 4 bits to 0), then load the value 9 into the accumulator,
then finally, set all the accumulator’s 4 bits by loading the value 15.

There are two instructions which use data that is part of the instruction itself.

Code Description
FIM Load 8 bit immediate DATA into register pair RP.
LDM Load 4-bit immediate DATA into the accumulator.

100 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

10.16.5 Transfer Of Control Instructions

JUN

Name Jump Unconditionally
Function Jump to any address within the memory space.
Syntax JUN (address)
Assembled
Binary 0010RAAAA AAAAAAAA
Decimal 64, then incrementing by 1 until 79 (1st word)
Hexadecimal 0x40, then incrementing by 2 until 0x4F (1st word)

Symbolic
Execution 2 words 16-bit code and an execution time of 21.6 𝜇 sec
Side-effects Not Applicable
Implemented jun

Detailed Description

The 8 bits held in the register pair specified by RP are loaded into the lower 8 bits of the program counter. The highest
4 bits of the program counter are unchanged. Therefore program execution continues at this address on the same page
of memory in which the JIN instruction is loaded.

The carry bit, nor the contents of the register pair are not affected.

The disassembly of the instruction below shows how the register pair is represented in the opcode.

This instruction and the JMS instruction , use a 12-bit address, and can reference any memory location. Their operation
is not influenced by their position within a page of memory, whereas some other instructions are.

Therefore, only a JUN or JMS instruction should be used to transfer control from one page of memory to another.

10.16. Instruction Summary 101

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Example program snippet for illustration

Arbitrary Memory
Address (Hex)

0x360 jun LRG
0x362 AD, add 1

0x370 LAC, ldm 3
0x371 jun AD

0x3EO LRG, fim 0p, 4
0x3E2 jun LAC

end

Normally, program instructions are executed sequentially.

A 12-bit register called the program counter holds the address of the instruction to be executed. The JUN instruction
replaces the program counter contents, causing program execution to continue at that address.

Thus the execution sequence of the above example is as follows:

The jun instruction at 0x360 replaces the contents of the program counter with 0x3EO. The next instruction executed
is the fim at location LRG which loads register 0 with the value 0, and register 1 with the value 4.

The jun at 0x3E2 is then executed. The program counter is set to 0x370, and the ldm at this address loads the accu-
mulator with the value 3.

The jun at 0x371 sets the program counter to 0x362, where the add instruction adds the contents of register 1 plus the
carry bit to the accumulator.

From here, normal program execution continues at location 0x363.

JIN

Name Jump Indirect
Function Jump to an address within this page of ROM.
Syntax JIN(Rp)
Assembled
Binary 0011RPp1
Decimal 49, then incrementing by 2 until 63 (1st word)
Hexadecimal 0x31, then incrementing by 2 until 0x3F (1st word)

Symbolic
Execution 1 words 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Not Applicable
Implemented jin

102 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Detailed Description

Program execution is transferred to the instruction at location ADDR, which may be anywhere in memory. (If the JUN
is located in ROM, ADDR is a ROM address; if located in program RAM, ADDR is a program RAM address).

The carry bit is not affected.

Example program

/ Example program
org 0x3e4
fim 0p 21
jin 0p
end

The FIM instruction loads register 0 with the value 1 and register 1 with the value 5. The JIN instruction then causes
a jump to location 0x315.

Note:

If the JIN instruction is located in the last location of a page in memory, the highest 4 bits of the program counter
are incremented by one, causing control to be transferred to the corresponding location on the next page. If the above
example, the JIN had been located at address 255 decimal (0x0FF) then control would have been transferred to address
0x115, not 0x015.

This is dangerous programming practice, and should be avoided whenever possible.

JCN

10.16. Instruction Summary 103



Pyntel4004, Release ENV_VERSION

Name Jump Conditional
Function Jump if satisfying a set of conditions
Syntax JCN
Assembled
Binary 0001 CCCC AAAAAAAA
Decimal 16 - 31 (1st word)
Hexadecimal 0x10 - 0x21 (1st word)

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.8 𝜇 sec
Side-effects Not Applicable
Implemented jcn

Detailed Description

If the condition specified by Cx is false, no action occurs and program execution continues with the next sequential
instruction. If the condition specified by Cx is true, the 8 bits specified by AAAA replace the lower 8 bits of the
program counter. The highest 4 bits of the program counter are unchanged. Therefore, program execution continues at
the specified address on the same page of memory in which the JCN instruction is located. The carry bit is not affected.

The condition code is specified in the assembly language statement as a decimal value from 0 to 15, which is represented
in the assembled instruction as the corresponding 4 bit hexadecimal digit. meaning, as follows:

More than one condition at a time may be tested. If the leftmost bit of the condition code is zero, a jump occurs if any
of the remaining specified conditions is true (an “or” condition). If the leftmost bit is one, a jump occurs if the logical
inverse of the “or” condition is true. In Boolean notation, the equation for the jump condition is as follows:

104 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/4ed95ca321cd0e9f19a89ef0ebea2b0ebe52952c/pyntel4004/src/hardware/machine.py#L360


Pyntel4004, Release ENV_VERSION

Test Pin 10

A special capability of the JCN instruction is being able to read the status of Pin 10 on the processor.

Pin 10 (shown below toward the top left of the layout) is the “TEST” pin.

Since this is a software implementation of the i4004, a directive has been introduced to the assembler to allow simulation
of Pin 10.

The directive ‘pin’ can set the pin 10 to be 1 or 0 depending oon the supplied value e.g.

pin 1

pin 0

The subsequent value of Pin 10 will be used until it is changed again, or the program ends.

Example program

/ Example program
org ram
ldm 10
jcn 4 done
dac
jun loop

done, end

Loads the value 10 into the accumulator, and decrements it by one. Once the value of the accumulator is zero, the
program ends.

10.16. Instruction Summary 105



Pyntel4004, Release ENV_VERSION

Notes

If the JCN instruction is located in the last two locations of a page in memory and the jump condition is true f the highest
4 bits of the program counter are incremented by 1, causing control to be transferred to the corresponding location on
the next memory page.

ISZ

Name Increment index register skip if zero
Function The content of the designated index register is incremented by 1. The accumulator and

carry/link are unaffected. If the result is zero, the next instruction after ISZ is executed.
If the result is different from 0, program control is transferred to the instruction located
at the 8 bit address A2A2A2A2, A1A1A1A1 on the same page (ROM) where the ISZ
instruction is located.

Syntax ISZ(R, 8-bit address)
Assembled
Binary 0111R A2A2A2A2, A1A1A1A1
Decimal 112, then incrementing by 1 until 127 (1st word)
Hexadecimal 0x70, then incrementing by 1 until 0x7F (1st word)

Symbolic
Execution 2 words, 8-bit code and an execution time of 10.8 𝜇 sec
Side-effects Not Applicable
Implemented isz

Detailed Description

The index register specified by REG is incremented by one. If the result is 0000, program execution continues with
the next sequential instruction. If the result does not equal 0000 the 8 bits specified by ADDR replace the lowest 8
bits of the program counter. The highest 4 bits of the program counter are unchanged. Therefore, program execution
continues at the specified address on the same page of memory in which the ISZ instruction is located.

The carry bit is not affected

106 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

NOTE: If ISZ is located on words 254 and 255 of a ROM page, when ISZ is executed and the result is not zero, program
control is transferred to the 8-bit address located on the next page in sequence and not on the same page where ISZ is
located. .. rubric:: Example program

/ Example program
org ram
fim 0p

lp xch 2
isz 0 lp
end

The FIM instruction loads registers 0 and 1 with O. The XCH is then executed. Program execution continues until the
ISZ is reached. Register 0 is incremented to contain 1, and since this result is non-zero, program control is transferred
back to location labelled “lp”. This process continues until register 0 = 1111. Then the ISZ increments register 0
producing a result of OOOO, and execution continues with the instruction at after the ISZ (which is the END).

Instructions which alter the normal execution sequence of instructions.

Code Description
JUN Jump to location ADDR.
JIN Jump to the address in register pair RP.
JCN Jump to ADDR if condition true.
ISZ Increment REG. If zero, skip. If non zero, jump to ADDR

10.16. Instruction Summary 107



Pyntel4004, Release ENV_VERSION

10.16.6 Subroutine Linkage Instructions

JMS

Name Jump to Subroutine
Function Jump to a subroutine.
Syntax JMS (address)
Assembled
Binary 0101AAAA AAAAAAAA
Decimal 80, then incrementing by 1 until 95 (1st word)
Hexadecimal 0x50, then incrementing by 2 until 0x5F (1st word)

Symbolic
Execution 2 words 16-bit code and an execution time of 21.6 𝜇 sec
Side-effects Not Applicable
Implemented jms

Detailed Description

The address of the instruction immediately following the JMS is written to the address stack for later use by a BBL
instruction. Program execution continues at memory address ADDR, which may be on any page.

The carry bit is not affected.

The disassembly of the instruction below shows how the register pair is represented in the opcode.

This instruction and the JUN instruction , use a 12-bit address, and can reference any memory location. Their operation
is not influenced by their position within a page of memory, whereas some other instructions are.

Therefore, only a JUN or JMS instruction should be used to transfer control from one page of memory to another.

108 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Example program snippet for illustration

jms lab
xch 0

lab, inc 1

bbl 6

Normally, program instructions are executed sequentially.

A 12-bit register called the program counter holds the address of the instruction to be executed. The JMS instruction
replaces the program counter contents, causing program execution to continue at that address, whilst also placing the
address of the next instruction on the stack.

Thus the execution sequence of the above example is as follows:

The jms instruction replaces the contents of the program counter with the address of the label lab. The next instruction
executed is inc.

Additional instructions are then executed, then the bbl instruction.

The bbl instruction then retrieves the topmost address from the stack (the address of the xch instruction), sets the
program counter to that address.

From here, normal program execution continues at that location.

BBL

Name Load Accumulator Immediate
Function The 4 bits of data, DDDD stored in the OPA field of the insruction word | br| are loaded

into the accumulator. The previous contents of the acummulator | br | are lost. The
carry/link bit is unaffected.

Syntax LDM(D)
Assembled
Binary 1101 DDDD
Decimal 192, then incrementing by 1 until 207 (1st word).
Hexadecimal 0xC0, then incrementing by 1 until 0xCF (1st word).

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Not Applicable
Implemented bbl

10.16. Instruction Summary 109

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Detailed Description

The program counter (address stack) is pushed down one level. Program control transfers to the next instruction fol-
lowing the last jump to subroutine (JMS) instruction.

The 4 bits of data DDDD stored in the OPA portion of the instruction are loaded to the accumulator.

BBL is used to return from a subroutine to main program. The carry bit is not affected.

Note

In the example here, the BBL instruction loads the value 6 into the accumulator. The address 013 is read into the
program counter, and program execution proceeds with the XCH instruction.

This section describes the commands which call and cause return from subroutines. They cause a transfer of program
control and use the address stack XXXX(see Sections 2.4 and 2.7•7)XXX

Code Description
JMS Call subroutine and push return address onto stack.
BBL Return from subroutine and load accumulator with immediate DATA.

10.16.7 Nop Instructions

NOP

Name No Operation
Function No operation performed
Syntax NOP
Assembled
Binary 0000 0000
Decimal 0
Hexadecimal 0x00
Symbolic Not Applicable
Execution 1 word, 8-bit code and an execution time of 10.8 𝜇 sec
Side-effects Not Applicable
Implemented nop

110 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/4ed95ca321cd0e9f19a89ef0ebea2b0ebe52952c/pyntel4004/src/hardware/machine.py#L54


Pyntel4004, Release ENV_VERSION

Description

No operation is performed. The program counter is incremented by one and execution continues with the next sequential
instruction.

Example program

/ Example program
org ram
nop
end

The program does nothing, since the NOP operation is the only operator in the program.

Notes

The NOP instruction is useful for padding out memory positions for those operators that function differently at the page
boundary, such that they do not end at a page boundary.

This instruction occupies one byte.

Code Description
NOP No Operation

10.16.8 Memory Selection Instructions

SRC

Name Send Register Control
Function The 8 bits contained in the register pair specified by RP are used as an address. This

address may designate a particular DATA RAM data character, a DATA RAM status
character, a RAM output port, or a ROM input/output port.

Syntax SRC(RPp)
Assembled
Binary 0010RPp1
Decimal 33, then incrementing by 2 until 47 (1st word)
Hexadecimal 0x21, then incrementing by 2 until 0x2F (1st word)

Symbolic
Execution 1 words, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Not Applicable
Implemented src

10.16. Instruction Summary 111

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Detailed Description

The address contained within the specified register pair designates either a particular DATA RAM data character, a
DATA RAM status character, a RAM output port, or a ROM input/output port. However, the address designates all of
these simultaneously; it is up to the programmer to then write the correct I/O or RAM instruction to access the proper
entity.

The disassembly of the instruction below shows how the register pair are represented in the opcode.

The address sent by the SRC remains in effect until changed by a subsequent SRC.

The only DATA RAM bank which receives the SRC address is the one selected by the last previous DCL instruction.

The 8 bits of the address sent by the SRC are interpreted in one of four ways, depending on the context as follows:

When referring to a DATA RAM Character

112 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

When referring to a DATA RAM Status Character

When referring to a DATA RAM Output Port

When referring to a ROM I/O Port

10.16. Instruction Summary 113



Pyntel4004, Release ENV_VERSION

Example program

/ Example program
org ram
fim 1p 180
src 1p
end

DCL

Name Designate Command Line
Function Select a RAM bank
Syntax DCL
Assembled
Binary 11111101
Decimal 253
Hexadecimal 0xFD

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Not Applicable
Implemented dcl

Detailed Description

The content of the three least significant accumulator bits is transferred to the comand control register within the CPU.
This instruction provides RAM bank selection when multiple RAM banks are used, since there could be up to 8 RAM
banks.

(If no DCL instruction is sent out, RAM Bank number zero is automatically selected after application of at least one
RESET).

DCL remains latched until it is changed.

The opcode for this instruction does not contain any additional data:

The least significant 3 bits of the accumulator determine which RAM bank is selected (detailled in the table below,
along with the bits of the command register).

114 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Accumulator CM-RAM i en-
abled

RAM Bank

0x000 CM-RAM 0 0
0x001 CM-RAM 1 1
0x010 CM-RAM 2 2
0x100 CM-RAM 3 3
0x011 CM-RAM 1 CM-RAM 2 4
0x101 CM-RAM 1 CM-RAM 3 5
0x110 CM-RAM 2 CM-RAM 3 6
0x111 CM-RAM 1 CM-RAM 2 CM-RAM 3 7

This section describes instructions which specify DATA RAM data and status characters, RAM output ports and ROM
input and output ports to be operated on by I/O and RAM instructions described here.

Code Description
SRC Contents of RP select a RAM or ROM address to be used by I/O and RAM instructions.
DCL Select a particular RAM bank.

10.16.9 Io And Ram Instructions

WRM

Name Write accumulator into RAM character
Function The accumulator content is written into the previously selected RAM main memory

character location. The accumulator and carry/link are unaffected.
Syntax WRM
Assembled
Binary 11100000
Decimal 224
Hexadecimal 0xE0

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Not Applicable
Implemented wrm

10.16. Instruction Summary 115

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Detailed Description

The contents of the accumulator are written into the DATA RAM data character specified by the last SRC instruction.

The carry bit and the accumulator are not affected.

The opcode for this instruction does not contain any additional data:

Example program

The example program will cause the DATA RAM data character number 4 of register 3 of chip 2 of the DATA RAM
bank selected by the last DCL instruction to contain 15 (1111b).

/ Example program
FIM 0P 180
SRC 0P
LDM 15
WRM

WMP

Name Write RAM Port
Function Write to a specified RAM port
Syntax WMP
Assembled
Binary 11100001
Decimal 225
Hexadecimal 0xE1

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Not Applicable
Implemented wmp

Detailed Description

The contents of the accumulator are written to the output port associated with the DATA RAM chip selected by the last
SRC instruction. The data is available on the output pins until a new WMP is executed on the same RAM chip. The
LSB bit of the accumultor appears on O0, (Pin 16), of the 4002.

The carry bit and the accumulator are unchanged.

The opcode for this instruction does not contain any additional data:

116 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Example Program

The example program will write the value 6 to the output port associated with the DATA RAM chip 2 of the currently
selected DATA RAM bank.

/ Example program
FIM 3P 64
SRC 3P
LDM 6
WMP

WRR

Name Write ROM Port
Function Write to a specified ROM port
Syntax WRR
Assembled
Binary 11100010
Decimal 226
Hexadecimal 0xE2

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Not Applicable
Implemented wrr

Detailed Description

The content of the accumulator is transferred to the ROM output port of the previously selected ROM chip. The data
is available on the output pins until a new WRR is executed on the same chip. The LSB bit of the accumulator appears
on I/O 0, (pin 16), of the 4001.

No operation is performed on I/O lines coded as inputs.

The carry bit and the accumulator are unchanged.

The opcode for this instruction does not contain any additional data:

10.16. Instruction Summary 117

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Example Program

The example program will write the value 15 to the output port associated with the ROM chip 2.

/ Example program
FIM 4P 64
SRC 4P
LDM 15
WRR

WPM

Name Write accumulator into RAM character
Function Read/Write half a byte to Program RAM from accumulator.
Syntax WPM
Assembled
Binary 11100011
Decimal 227
Hexadecimal 0xE3

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Not Applicable
Implemented wpm

Detailed Description

This is a special instruction which may be used to write the contents of the accumulator into a half byte of program
RAM,or read the contents of a half byte of program RAM into a ROM input port where it can be accessed by a program.

The carry bit is not affected.

The opcode for this instruction does not contain any additional data:

Notes

Two WPM instructions must always appear in close succession; that is, each time one WPM instruction references a
half byte of program RAM as indicated by an SRC address, another WPM must access the other half byte before the
SRC address is altered. An internal counter keeps track of which half-byte is being accessed. If only one WPM occurs,
this ounter will be out of sync with the program and errors will occur. In this situation a RESET pulse must be used to
re-initialize the machine.

A WPM instruction requires an SRC address to access program RAM. Whenever a WPM is executed, the DATA
RAM which happens to correspond to this SRC address will also be written. If data needed later in the program
is being held in such DATA RAM, the programmer must save it elsewhere before executing the WPM instruction.

118 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Storing Data Into Program RAM

A program must perform the following actions in order to store eight bits of data into a program RAM location:

(1) The value 1 must be written to ROM port number 14. This is a “write enable” signal, permitting the store
operation to work.

(2) The highest 4 bits of the program RAM address to be accessed must be written to ROM port number 15.

(3) The lowest 8 bits of the program RAM address to be accessed must be sent out by an SRC instruction.

(4) The higher 4 bits of data to be written must be loaded into the accumulator and written with the first WPM; the
lower 4 bits of data must then be loaded into the accumulator and written with the second WPM.

(5) The value 0 must be written to ROM port number 14, clearing the “write enable”.

Reading Data From Program RAM

A program must perform the following actions in order to read eight bits of data from a program RAM location:

(1) The highest 4 bits of the program RAM address to be accessed must be written to ROM port 15.

(2) The lowest 8 bits of the program RAM address to be accessed must be sent out by an SRC instruction.

(3) Two WPM instructions in succession must be executed. The first reads the leftmost 4 bits of the program RAM
location into ROM port 14; the second reads the rightmost 4 bits of the program RAM location into ROM port
15.

Example Program

The following program writes to a program RAM location whose address is held in status characters 0, 1, and 2 of
DATA RAM register 0 of DATA RAM chip 0, shown below.

/ Example program
FIM 0P 180
SRC 0P
LDM 15
WRM

FIM 0P 224
SRC 0P / Select ROM port 14.
LDM 1
WRR / Turn on write enable.

(continues on next page)

10.16. Instruction Summary 119



Pyntel4004, Release ENV_VERSION

(continued from previous page)

/ Set up PRAM address.
/

FIM 0P 0
SRC 0P / Select DATA RAM chip 0 register 0.
RD1 / Read middle 4 bits of address.
XCH 10 / Save in register 10.
RD2 / Read lowest 4 bits of address.
XCH 11 / Save in register 11.
RD0 / Read highest 4 bits of address.
FIM 0P 240
SRC 0P / Select ROM port 15.
WRR / Write high address.
SRC 5P / Write middle + low address (RP5)

/
LD 2 / High 4 data bits to accumulator.
WPM / Write to PRAM
LD 3 / Low 4 data bits to accumulator.
WPM / Write to PRAM

FIM 0P 224
SRC 0P / Select ROM port 14.
CLB
WRR / Turn off write enable.

WRn

Name Write Data Ram Status Character
Function The content of the accumulator is written into the RAM status character n of the pre-

viously selected RAM register.
Syntax WR0, WR1, WR2, WR3
Assembled
Binary 11100100, 11100101, 11100110, 11100111,
Decimal 228, 229, 230, 231
Hexadecimal 0xE4, 0xE5, 0xE6, 0xE7

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Not Applicable
Implemented wrn

120 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Detailed Description

The contents of the DATA RAM status character whose number from 0 to 3 is specified by n, associated with the DATA
RAM register specified by tbe last SRC instruction, are replaced by the contents of the accumulator.

The carry bit and the accumulator are not affected.

The DATA RAM status character is encoded in the opcode as shown below:

Example program

The example program will write the value 2 into status character 1 of DATA RAM register 0 of chip 0 of the currently
selected DATA RAM bank.

/ Example program
FIM 0P 0
SRC 0P
LDM 2
WR1

RDM

Name Read RAM character
Function The content of the previously selected RAM main memory character is transferred to

the accumulator.
Syntax WRM
Assembled
Binary 11101001
Decimal 233
Hexadecimal 0xE9

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Not Applicable
Implemented rdm

10.16. Instruction Summary 121

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Detailed Description

The DATA RAM data character specified by the last SRC instruction is loaded into the accumulator.

The carry bit and the data character are not affected.

The opcode for this instruction does not contain any additional data:

Example program

The example will read the contents of DATA RAM data character number 5 of register 0 of chip 0 of the currently
selected DATA RAM bank into the accumulator.

/ Example program
FIM 2P 5
SRC 2P
RDM

RDR

Name Read ROM Port
Function The data present at the input lines of the previously selected ROM chip is transferred

to the accumulator.
Syntax RDR
Assembled
Binary 11101010
Decimal 234
Hexadecimal 0xEA

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.8 𝜇 sec
Side-effects Not Applicable
Implemented rdr

Detailed Description

The ROM port specified by the last SRC instruction is read. When using the 4001 ROM, each of the 4 lines of the port
may be an input or an output line; the data on the input lines is transferred to the corresponding bits of the accumulator.
Any output lines cause either a 0 or a 1 to be transferred to the corresponding bits of the accumulator.

The opcode for this instruction does not contain any additional data:

122 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Example

The following instructions will read the contents of the port associated with ROM number 10 into the accumulator.

/ Example
FIM 3P 160
SRC 3P
RDR

The rdr operation above is carried out as follows:

Accumulator = 1 0 1 0
Data Character = 0 1 1 1
Carry = 0

-------
Result 1 0 0 0 1

The accumulator contains 1 and the carry bit is set.

If the leftmost I/O line is an output line and the remaining I/O lines are input lines containing 010b, then the accumulator
will contain either 1010b or 0010b.

Note

On the INTELLEC 4, a ROM port may be used for either input or output. If programs tested on the INTELLEC 4 are
to be run later with a 4001 ROM, the programmer must be careful not to use one port for both functions.

Note

Whether a 0 or a 1 is transferred is a function of the hardware and not under control of the programmer. That is to say,
when a 4001 ROM chip is ordered, it is required to determine at that stage what the functionality of the pins should
be. Once ordered, the decision cannot be reverted. An order form can be downloaded here

RDn

10.16. Instruction Summary 123



Pyntel4004, Release ENV_VERSION

Name Read Data from Ram Status Character
Function The 4-bits of status character n for the previously selected RAM register are transferred

to the accumulator.
Syntax RD0, RD1, RD2, RD3
Assembled
Binary 11101100, 11101101, 11101110, 11101111,
Decimal 236, 237, 238, 239
Hexadecimal 0xEC, 0xED, 0xEE, 0xEF

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 𝜇 sec
Side-effects Not Applicable
Implemented rdn

Detailed Description

The DATA RAM status character whose number from 0 to 3 is specified by “n”, associated with the DATA RAM
register specified by the last SRC instruction, is loaded into the accumulator.

The carry bit and the status character are not affected.

The DATA RAM status character is encoded in the opcode as shown below:

Example program

The example program will read the contents of DATA RAM status character 3 of register 0 of chip 0 of the currently
selected DATA RAM bank into the accumulator.

/ Example program
FIM 2P 5
SRC 2P
RD3

124 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

ADM

Name Addd DATA RAM to accumulator with carry
Function The content of the previously selected RAM main memory character is added to the

accumulator with carry.
Syntax ADM
Assembled
Binary 11101011
Decimal 235
Hexadecimal 0xEB

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.8 𝜇 sec
Side-effects Depending on the result, the carry bit is reset or set.
Implemented adm

Detailed Description

The DATA RAM data character specified by the last SRC instruction, plus the carry bit, are added to the accumulator.
The carry bit will be set if the result generates a carry, otherwise. the data character is not affected.

The opcode for this instruction does not contain any additional data:

Example

In this example, the carry bit = 0, the accumulator contains a value of 10, and DATA RAM character 0 of register 0 of
chip 0 contains 7.

/ Example
FIM 0P 0
SRC 0P
ADM

The adm operation above is carried out as follows:

Accumulator = 1 0 1 0
Data Character = 0 1 1 1
Carry = 0

-------
Result 1 0 0 0 1

The accumulator contains 1 and the carry bit is set.

10.16. Instruction Summary 125



Pyntel4004, Release ENV_VERSION

SBM

Name Subtract DATA RAM from memory with borrow
Function The content of the previously selected RAM character is subtracted from the accumu-

lator with borrow.
Syntax SBM
Assembled
Binary 11101000
Decimal 232
Hexadecimal 0xE8

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.8 𝜇 sec
Side-effects Depending on the result, the carry bit is reset or set.
Implemented sbm

Detailed Description

The value of the DATA RAM character specified by the last SRC instruction is subtracted from the accumulator with
borrow. The data character is unaffected. A borrow from the previous subtraction is indicated by the carry bit being
equal to one at the beginning of this instruction. No borrow from the previous subtraction is indicated by the carry
bit being equal to zero at the beginning of this instruction. This instruction sets the carry bit if the result generates
no borrow, and resets the carry bit if the result generates a borrow. The subtract with borrow operation is actually
performed by complementing each bit of the data character and adding the resulting value plus the complement of the
carry bit to the accumulator.

Notes

This instruction may be used to subtract numbers greater than 4 bits in length. The carry bit must be complemented by
the program between each required subtraction operation. For an example of this, see “Decimal Subtraction”:.

The opcode for this instruction does not contain any additional data:

Example

In order to perform a normal subtraction, the carry bit should be zero.

Assume the carry bit is 1, the accumulator contains 7, and the DATA RAM character 1 of register 0 of chip 0 contains
5, the SBM will perform the following operation:

/ Example
FIM 1P 1
SRC 1P
SBM

The sbm operation above is carried out as follows:

126 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208


Pyntel4004, Release ENV_VERSION

Accumulator = 0 1 1 1
~ Data Character = 1 0 1 0 ( Character = 0 1 0 1)
~ Carry = 0 ( carry = 1)

-------
Result 0 0 0 0 1

Carry indicates a borrow

The accumulator contains 1 and the carry bit is reset.

This section describes instructions which access DATA RAM characters or perform input or output operations. One
instruction, WPM, allows the programmer to read or write 8-bit program RAM locations. These instructions use
addresses selected by the DCL and SRC instructions.

Instructions in this class occupy one byte as follows:

Code Description
WRM Write accumulator to RAM.
WMP Write accumulator to RAM output port
WRR Write accumulator to ROM output port.
WPM Write accumulator to Program RAM.
WRn Write accumulator to RAM status char&cter n (n = 0, 1, 2 or 3).
RDM Load accumulator from RAM.
RDR Load accumulator from ROM input port.
RDn Load accumulator from RAM status character n (n = 0, 1, 2 or 3) .
ADM Add RAM data plus carry to accumulator.
SBM Subtract RAM data from accumulator with borrow.

This is a summary of 4004 instructions.

Abbreviations used are as follows:

10.16. Instruction Summary 127



Pyntel4004, Release ENV_VERSION

Abbreviation Description
A Accumulator.
A n Bit n in the accumulator, where n may have any value from 0 to 3.
ADDR A read-only memory or program random-access memory address.
carry The carry bit.
PC The 12-bit Program Counter.
PCH The high-order 4 bits of the Program Counter.
PCL The low-order 4 bits of the Program Counter.
PCM The middle 4 bits of the Program Counter.
RAM Random Access Memory.
REG Any index register from 0 to 15.
R0 Index Register 0.
R1 Index Register 1.
ROM Read Only Memory.
RP Any index register pair from 0P to 7P.
STK The address stack

The number obtained by complementing each bit of “value”.
X:Y The value obtained by concatenating the values X and Y.
[ ] An optional field enclosed by brackets.
( ) Contents of register or memory enclosed by parentheses.

Replace value on left hand side of arrow with value on right hand side.

Table 1: Instruction Summary
Group Definition
Index Register
Instructions

Instructions which involve index registers or register pairs.

Index Register
to Accumulator
Instructions

Instructions which involve an operation between an index register and the accumulator. Instruc-
tions in this class occupy one byte.

Accumulator
Instructions

Instructions which operate only on the contents of the accumulator and/or the carry bit. Instruc-
tions in this class occupy one byte.

Immediate
Instructions

Instructions which use data that is part of the instruction itself.

Transfer Of
Control In-
structions

Instructions which alter the normal execution sequence of instructions.

Subroutine
Linkage In-
structions

Instructions which call and cause return from subroutines. They cause a transfer of program
control and use the address stack.

No-Operation
Instruction

This instruction occupies one byte.

Memory
Selection
Instructions

Instructions which specify DATA RAM data and status characters, RAM output ports and ROM
input and output ports to be operated on by I/O and RAM instructions

Input/Output
and RAM
Instructions

Instructions which access DATA RAM characters or perform input or output operations. One
instruction, WPM, allows the programmer to read or write 8-bit program RAM locations. These
instructions use addresses selected by the DCL and SRC instructions.

128 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

10.17 Instruction Machine Codes

In order to help the programmer examine memory when debugging programs, this list provides the assembly language
instruction represented by each of the 256 possible instruction code bytes. Where an instruction occupies two bytes,
only the first (code) byte is given.

Table 2: Instruction Machine Codes
Decimal Octal Hex Mnemonic Parameter Comment
0 0 0 NOP
1 1 1 Not Used
2 2 2 Not Used
3 3 3 Not Used
4 4 4 Not Used
5 5 5 Not Used
6 6 6 Not Used
7 7 7 Not Used
8 10 8 Not Used
9 11 9 Not Used
10 12 A Not Used
11 13 B Not Used
12 14 C Not Used
13 15 D Not Used
14 16 E Not Used
15 17 F Not Used
16 20 10 JCN 0 CN=0
17 21 11 JCN 1 CN=1
18 22 12 JCN 2 CN=2
19 23 13 JCN 3 CN=3
20 24 14 JCN 4 CN=4
21 25 15 JCN 5 CN=5
22 26 16 JCN 6 CN=6
23 27 17 JCN 7 CN=7
24 30 18 JCN 8 CN=8
25 31 19 JCN 9 CN=9
26 32 1A JCN 10 CN=10
27 33 1B JCN 11 CN=11
28 34 1C JCN 12 CN=12
29 35 1D JCN 13 CN=13
30 36 1E JCN 14 CN=14
31 37 1F JCN 15 CN=15
32 40 20 FIM 0P
33 41 21 SRC 0
34 42 22 FIM 1P
35 43 23 SRC 1
36 44 24 FIM 2P
37 45 25 SRC 2
38 46 26 FIM 3P
39 47 27 SRC 3
40 50 28 FIM 4P

continues on next page

10.17. Instruction Machine Codes 129



Pyntel4004, Release ENV_VERSION

Table 2 – continued from previous page
Decimal Octal Hex Mnemonic Parameter Comment
41 51 29 SRC 4
42 52 2A FIM 5P
43 53 2B SRC 5
44 54 2C FIM 6P
45 55 2D SRC 6
46 56 2E FIM 7P
47 57 2F SRC 7
48 60 30 FIN 0
49 61 31 JIN 0
50 62 32 FIN 1
51 63 33 JIN 1
52 64 34 FIN 2
53 65 35 JIN 2
54 66 36 FIN 3
55 67 37 JIN 3
56 70 38 FIN 4
57 71 39 JIN 4
58 72 3A FIN 5
59 73 3B JIN 5
60 74 3C FIN 6
61 75 3D JIN 6
62 76 3E FIN 7
63 77 3F JIN 7
64 100 40 JUN 𝜓
65 101 41 JUN 𝜓
66 102 42 JUN 𝜓
67 103 43 JUN 𝜓
68 104 44 JUN 𝜓
69 105 45 JUN 𝜓
70 106 46 JUN 𝜓
71 107 47 JUN 𝜓
72 110 48 JUN 𝜓
73 111 49 JUN 𝜓
74 112 4A JUN 𝜓
75 113 4B JUN 𝜓
76 114 4C JUN 𝜓
77 115 4D JUN 𝜓
78 116 4E JUN 𝜓
79 117 4F JUN 𝜓
80 120 50 JMS 𝜓
81 121 51 JMS 𝜓
82 122 52 JMS 𝜓
83 123 53 JMS 𝜓
84 124 54 JMS 𝜓
85 125 55 JMS 𝜓
86 126 56 JMS 𝜓
87 127 57 JMS 𝜓
88 130 58 JMS 𝜓
89 131 59 JMS 𝜓

continues on next page

130 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

Table 2 – continued from previous page
Decimal Octal Hex Mnemonic Parameter Comment
90 132 5A JMS 𝜓
91 133 5B JMS 𝜓
92 134 5C JMS 𝜓
93 135 5D JMS 𝜓
94 136 5E JMS 𝜓
95 137 5F JMS 𝜓
96 140 60 INC 0
97 141 61 INC 1
98 142 62 INC 2
99 143 63 INC 3
100 144 64 INC 4
101 145 65 INC 5
102 146 66 INC 6
103 147 67 INC 7
104 150 68 INC 8
105 151 69 INC 9
106 152 6A INC 10
107 153 6B INC 11
108 154 6C INC 12
109 155 6D INC 13
110 156 6E INC 14
111 157 6F INC 15
112 160 70 ISZ 0
113 161 71 ISZ 1
114 162 72 ISZ 2
115 163 73 ISZ 3
116 164 74 ISZ 4
117 165 75 ISZ 5
118 166 76 ISZ 6
119 167 77 ISZ 7
120 170 78 ISZ 8
121 171 79 ISZ 9
122 172 7A ISZ 10
123 173 7B ISZ 11
124 174 7C ISZ 12
125 175 7D ISZ 13
126 176 7E ISZ 14
127 177 7F ISZ 15
128 200 80 ADD 0
129 201 81 ADD 1
130 202 82 ADD 2
131 203 83 ADD 3
132 204 84 ADD 4
133 205 85 ADD 5
134 206 86 ADD 6
135 207 87 ADD 7
136 210 88 ADD 8
137 211 89 ADD 9
138 212 8A ADD 10

continues on next page

10.17. Instruction Machine Codes 131



Pyntel4004, Release ENV_VERSION

Table 2 – continued from previous page
Decimal Octal Hex Mnemonic Parameter Comment
139 213 8B ADD 11
140 214 8C ADD 12
141 215 8D ADD 13
142 216 8E ADD 14
143 217 8F ADD 15
144 220 90 SUB 0
145 221 91 SUB 1
146 222 92 SUB 2
147 223 93 SUB 3
148 224 94 SUB 4
149 225 95 SUB 5
150 226 96 SUB 6
151 227 97 SUB 7
152 230 98 SUB 8
153 231 99 SUB 9
154 232 9A SUB 10
155 233 9B SUB 11
156 234 9C SUB 12
157 235 9D SUB 13
158 236 9E SUB 14
159 237 9F SUB 15
160 240 A0 LD
161 241 A1 LD
162 242 A2 LD
163 243 A3 LD
164 244 A4 LD
165 245 A5 LD
166 246 A6 LD
167 247 A7 LD
168 250 A8 LD
169 251 A9 LD
170 252 AA LD
171 253 AB LD
172 254 AC LD
173 255 AD LD
174 256 AE LD
175 257 AF LD
176 260 B0 XCH 0
177 261 B1 XCH 1
178 262 B2 XCH 2
179 263 B3 XCH 3
180 264 B4 XCH 4
181 265 B5 XCH 5
182 266 B6 XCH 6
183 267 B7 XCH 7
184 270 B8 XCH 8
185 271 B9 XCH 9
186 272 BA XCH 10
187 273 BB XCH 11

continues on next page

132 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

Table 2 – continued from previous page
Decimal Octal Hex Mnemonic Parameter Comment
188 274 BC XCH 12
189 275 BD XCH 13
190 276 BE XCH 14
191 277 BF XCH 15
192 300 C0 BBL 0
193 301 C1 BBL 1
194 302 C2 BBL 2
195 303 C3 BBL 3
196 304 C4 BBL 4
197 305 C5 BBL 5
198 306 C6 BBL 6
199 307 C7 BBL 7
200 310 C8 BBL 8
201 311 C9 BBL 9
202 312 CA BBL 10
203 313 CB BBL 11
204 314 CC BBL 12
205 315 CD BBL 13
206 316 CE BBL 14
207 317 CF BBL 15
208 320 D0 LDM 0
209 321 D1 LDM 1
210 322 D2 LDM 2
211 323 D3 LDM 3
212 324 D4 LDM 4
213 325 D5 LDM 5
214 326 D6 LDM 6
215 327 D7 LDM 7
216 330 D8 LDM 8
217 331 D9 LDM 9
218 332 DA LDM 10
219 333 DB LDM 11
220 334 DC LDM 12
221 335 DD LDM 13
222 336 DE LDM 14
223 337 DF LDM 15
224 340 E0 WRM
225 341 E1 WMP
226 342 E2 WRR
227 343 E3 WPM
228 344 E4 WR0
229 345 E5 WR1
230 346 E6 WR2
231 347 E7 WR3
232 350 E8 SBM
233 351 E9 RDM
234 352 EA RDR
235 353 EB ADM
236 354 EC RD0

continues on next page

10.17. Instruction Machine Codes 133



Pyntel4004, Release ENV_VERSION

Table 2 – continued from previous page
Decimal Octal Hex Mnemonic Parameter Comment
237 355 ED RD1
238 356 EE RD2
239 357 EF RD3
240 360 F0 CLB
241 361 F1 CLC
242 362 F2 IAC
243 363 F3 CMC
244 364 F4 CMA
245 365 F5 RAL
246 366 F6 RAR
247 367 F7 TCC
248 370 F8 DAC
249 371 F9 TCS
250 372 FA STC
251 373 FB DAA
252 374 FC KBP
253 375 FD DCL
254 376 FE Not Used
255 377 FF Not Used

𝜓 Second hexadecimal digit is part of the jump address.

10.18 Programming Techniques

10.18.1 Crossing Page Boundaries

As described in Section 2, programs are held in either ROM or program RAM, both of which are divided into pages.
Each page consists of 256 8 -bit locations. Addresses 0 through 255 comprise the first page,256-511 comprise the
second page, and so on.

In general, it is good programming practice to never allow program flow to cross a page boundary except by using
a JUN or JMS instruction.

The following example will show why this is true. Suppose a program in memory appears as below:

134 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

If the accumulator is non-zero when the JCN is executed, program control will be transferred to location 200, as the
programmer intended. Suppose now that an error discovered in the program requires that a new instruction be inserted
somewhere between locations 200 and 253. The program would now appear as follows:

Since the JCN is now located in the last two locations of a page, it functions differently. Now if the accumulator is
non-zero when the JCN is executed, program control will be erroneously transferred to location 456, causing invalid
results. Since both the JUN and JMS instructions use 12-bit addresses to directly address locations on any page of
memory, only these instructions should be used to cross page boundaries.

10.18.2 Subroutines

Frequently, a group of instructions must be repeated many times in a program. The group may be written “n” times if it
is needed at “n” different points in a program, but better economy can be obtained by using subroutines. A subroutine
is coded like any other group of assembly language statements, and is referred to by its name, which is the label
of the first instruction. The programmer references a subroutine by writing its name in the operand field of a JMS
instruction. When the JMS is executed, the address of the next sequential instruction after the JMS is written to the
address stack (see Section 2.4), and program execution proceeds with the first instruction of the subroutine. When
the subroutine has completed its work, a BBL instruction is executed, which loads a value into the accumulator and
causes an address to be read from the stack into the program counter, causing program execution to continue with the
instruction following the JMS. Thus, one copy of a subroutine may be called from many different points in memory,
preventing duplication of code. Note also that since the address stack and the JMS instruction use 12-bit addresses,
calling programs and subroutines may be located anywhere in ROM or control program RAM (they need not be on the
same page in memory).

10.18. Programming Techniques 135



Pyntel4004, Release ENV_VERSION

Example:

Subroutine IN increments an 8 bit number passed in index register 0 and 1 and then returns to the instruction following
the last JMS instruction executed.

IN, XCH 1 / Register 1 to accumulator
IAC / Increment value and produce carry
XCH 1 / Restore register 1
JCN 10 NC / Jump if Carry is zero
INC 0 / Increment high order 4 bits

NC, BBL 0 / returns

Assume IN appears as follows:

When the first JMS is executed, address 3C2H is written to the address stack, and control is transferred to IN. Execution
of the BBL statement will cause the address 3C2H to be read from the stack and placed in the program counter, causing
execution to continue at 3C2H (since the JMS occupies two bytes).

When the second JMS is executed, address 403H is written to the stack, and control is again transferred to IN. This
time, the BBL will cause execution to resume at 403H.

Note that IN could have called another subroutine during its execution, causing another address to be written to the
stack. This can occur only up to three levels, however, since the stack can hold only three addresses. Beyond this point,
some addresses will be overwritten and BBLs will transfer program control to incorrect addresses.

136 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

10.18.3 Branch Table Pseudosubroutines

Suppose a program consists of several separate routines, any of which may be executed depending upon some initial
condition (such as a bit set in the accumulator). One way to code this would be to check each condition sequentially
and branch to the routines accordingly as follows:

CONDITION = CONDITION 1 ?
IF YES BRANCH TO ROUTINE 1
CONDITION = CONDITION 2 ?
IF YES BRANCH TO ROUTINE 2

.

.

.

.
BRANCH TO CONDITION N

A sequence as above is inefficient, and can be improved by using a branch table. The logic at the beginning of the
branch table program computes an index into the branch table. The branch table itself consists of a list of starting
addresses for the routines to be selected. Using the table index, the branch table program loads the selected routine’s
starting address into a register pair and executes a “jump indirect” to that address. For example, consider a program
that executes one of five routines depending upon which bit (possibly none) of the accumulator is set:

Jump to routine 0 if accumulator = 0000
Jump to routine 1 if accumulator = 0001
Jump to routine 2 if accumulator = 0010
Jump to routine 3 if accumulator = 0100
Jump to routine 4 if accumulator = 1000

A program that provides the above logic is given below. The program is termed a “pseudosubroutine” because it is
treated as a subroutine by the programmer, (i.e. it appears just once in memory), but it is entered via a regular “jump”
instruction rather than via a JMS instruction. This is possible because the branch routines control subsequent execution,
and will never return to the instruction following JMS.

ST, KBP / Convert Accum to branch table index
IAC / If accumulator = 1111, Error
JCN 4 ERR / Jump if IAC produced zero
DAC / OK, restore accumulator
FIM 0 BTL / Registers 0 and 1 are the address of the branch table
CLC / Clear Carry

(continues on next page)

10.18. Programming Techniques 137



Pyntel4004, Release ENV_VERSION

(continued from previous page)

ADD 1 / Add index to the branch table address
XCH 1 / Store back in register 1
JCN 10 NC / Jump if no carry
INC 0 / If carry, increment register 0

NC, FIN 0P / Registers 0 and 1 (address of routine)
JIN 0P / Jump to correct routine
.
.
.
.

BTL, 0 + RT0 / Branch table.
0 + RT1 / Each entry is an 8-bit address
0 + RT2 / of the specific routine to call
0 + RT3
0 + RT4
.
.
.
.

ERR, . / Error handling routine

Note: Since FIM, FIN, and JIN operate with 8-bit addresses, routines ST, BTL, and RT0 through RT4 must all reside
in the same page of memory.

If the accumulator held 01OO when location ST was reached, the KBP would convert it to 0011. The 8 bit address at
BTL + 3 would therefore be loaded into registers 0 and 1, and the JIN would cause program control to be transferred
to routine RT3.

10.18.4 Logical Operations

Logical AND

The AND function of two bits is given by the following truth table:

Since any bit ANDed with a zero produces a zero, and any bit ANDed with a one remains unchanged, the AND function
is often used to zero groups of bits.

The following subroutine produces the AND, bit by bit, of the two 4-bit quantities held in index registers 0 and 1. The
result is placed in register 0, while register 1 is set to 0. Index registers 2 and 3 are also used. For example, if register
0 = 1110 and register 1 = 0011, register 0 will be replaced with 0010.

138 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

1 1 1 0
AND 0 0 1 1

-------
0 0 1 0

The subroutine produces the AND of two bits by placing the bits in the leftmost position of the accumulator and register
2, respectively, and zeroing the right-most three bits of the accumulator and register 2. Register 2 is then added to the
accumulator, and the resulting carry is equal to the AND of the two bits.

AND, FIM 1P 11 / Register 2 = 0, Register 3 = 11
L1, LDM 0 / Get bit of Register 0, Set accumulator = 0

XCH 0 / Set Register 0 to accumulator; Register 0 = 0
RAL / Move first 'AND' bit to carry
XCH 0 / Save shifted data in Register 0, set accumulator = 0
INC 3 / Done if Register 3 = 0
XCH 3 / Register 3 to accumulator
JCN 4 L2 / Return if accumulator = 0
XCH 3 / Otherwise, restore accumulator and Register 3
RAR / Bit of Register 0 is alone in the accumulator
XCH 2 / Save first 'AND' bit in Register 2
XCH 1 / Get bit of Register 1
RAL / Move leftmost bit to carry
XCH 1 / Save shifted data in Register 1
RAR / Move second 'AND' bit to carry
ADD 2 / 'ADD' gives the 'AND' of the bits in carry
JUN L1

L2, BBL 0 / Return to main program

Logical OR

The OR function of two bits is given by the following truth table:

Since any bit ORed with a one produces a one, and any bit ORed with a zero remains unchanged, the OR function is
often used to set groups of bits to one.

The following subroutine produces the OR, bit by bit,of the two 4 bit quantities held in index registers 0 and 1. The
result is placed in register 0 while register 1 is set to 0. Index registers 2 and 3 are also used.

For example, if register 0 is set to 0100 and register 1 to 0011, register 0 will be replaced with 0111.

0 1 0 0
AND 0 0 1 1

-------
0 1 1 1

The subroutine produces the OR of two bits by placing the bits in the leftmost position of the accumuiator and register
2, respectively, and zeroing the rightmost three bits of the accumulator and register 2. Register 2 is then added to the

10.18. Programming Techniques 139



Pyntel4004, Release ENV_VERSION

accumulator. If the resulting carry = 1, the OR of the two bits = 1. If the resulting carry = 0, the OR of the two bits is
equal to the leftmost bit of the accumulator.

OR, FIM 1P 11 / Register 2 = 0, Register 3 = 11
L1, LDM 0 / Get bit of Register 0, Set accumulator = 0

XCH 0 / Set Register 0 to accumulator; Register 0 = 0
RAL / Move first 'OR' bit to carry
XCH 0 / Save shifted data in Register 0, set accumulator = 0
INC 3 / Done if Register 3 = 0
XCH 3 / Register 3 to accumulator
JCN 4 L2 / Return if accumulator = 0
XCH 3 / Otherwise, restore accumulator and Register 3
RAR / Bit of Register 0 is alone in the accumulator
XCH 2 / Save first 'OR' bit in Register 2
LDM 0 / Get bit in Register 1, set accumulator = 0
XCH 1 / Get bit of Register 1
RAL / Move leftmost bit to carry
XCH 1 / Save shifted data in Register 1
RAR / Move second 'OR' bit to carry
ADD 2 / 'ADD' gives the 'OR' of the bits in carry
JCN 2 L1 / Jump if carry = 1 because 'OR' = 1
RAL / Otherwise, 'OR' leftmost bit of the accumulator,

/ transmit to carry by RAL
JUN L1

L2, BBL 0 / Return to main program

Logical XOR

The XOR function of two bits is given by the following truth table:

Since the exclusive OR of two equal bits produces a zero and the exclusive OR of two unequal bits produces a one, the
exclusive OR function can be used to test two quantities for equality. If the quantities differ in any bit position, a one
will be produced in the result.

The following subroutine produces the exclusive - OR of the two 4-bit quantities held in index registers 0 and 1. The
result is placed in register 0, while register 1 is set to 0. Index registers 2 and 3 are also used.

For example if register 0 = 0011 and register 1 = 0010, register 0 will be replaced with 0001.

0 0 1 1
AND 0 0 1 0

-------
0 0 0 1

The subroutine produces the XOR of two bits by placing the bits in the leftmost position of the accumulator and register
2, respectively, and zeroing the rightmost three bIts of the accumulator and register 2. Register 2 is then added to the
accumulator. The XOR of the two bits is then equal to the leftmost bit of the accumulator.

140 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

XOR, FIM 1P 11 / Register 2 = 0, Register 3 = 11
L1, LDM 0 / Get bit of Register 0, Set accumulator = 0

XCH 0 / Set Register 0 to accumulator; Register 0 = 0
RAL / Move first 'XOR' bit to carry
XCH 0 / Save shifted data in Register 0, set accumulator = 0
INC 3 / Done if Register 3 = 0
XCH 3 / Register 3 to accumulator
JCN 4 L2 / Return if accumulator = 0
XCH 3 / Otherwise, restore accumulator and Register 3
RAR / Bit of Register 0 is alone in the accumulator
XCH 2 / Save first 'XOR' bit in Register 2
LDM 0 / Get bit in Register 1, set accumulator = 0
XCH 1
RAL / Move leftmost bit to carry
XCH 1 / Save shifted data in Register 1
RAR / Move second 'XOR' bit to carry
ADD 2 / 'ADD' gives the 'XOR' of the bits in carry
RAL / Otherwise, 'XOR' leftmost bit of the accumulator,

/ transmit to carry by RAL
JUN L1

L2, BBL 0 / Return to main program

There are three subroutines which produce basic logical operations:

• AND

• OR

• XOR (eXclusive OR)

10.18.5 Multi-Digit Addition

The carry bit may be used to add unsigned data quantities of arbitrary length.

Consider the following addition of two 4-digit hexadecimal numbers:

3 8 1 C
6 9 F 2 +
-------
A 2 0 E

This addition may be performed by setting the carry bit = 1, then adding the two low-order digits of the numbers, then
adding the resulting carry to the two next higher order digits, and so on:

10.18. Programming Techniques 141



Pyntel4004, Release ENV_VERSION

The following subroutine will perform a sixteen digit addition, making these assumptions:

• The two numbers to be added are stored in DATA RAM chip 0, registers 0 and 1.

• The numbers are stored with the least significant digit first (in character 0) .

• The result will be stored least significant digit first in register 1 replacing the contents of register 1.

• Index register 8 will count the number of digits (up to 16) which have been added.

9 = 1 0 0 1
9 = 1 0 0 1

Carry = 0
---------

Result 0 0 1 0
Carry 1

AD, FIM 2P 0 / REG PAIR 2P RAM CHIP 0 OF REG 0
FIM 3P 16 / REG PAIR 3P RAM CHIP 0 OF REG 1
CLB / SET CARRY = 0
XCH 8 / SET DIGIT COUNTER = 0

AD1, SRC 2P / SELECT RAM REG 0
RDM / READ DIGIT TO ACCUMULATOR
SRC 3P / SELECT RAM REG 1
ADM / ADD DIGIT + CARRY TO ACCUMULATOR
WRM / WRITE RESULT TO REG 1
INC 5 / ADDRESS NEXT CHARACTER OF RAM REG 0
INC 7 / ADDRESS NEXT CHARACTER OF RAM REG 1
ISZ 8 AD1 / BRANCH IF DIGIT COUNTER < 16 (NON ZERO)

OVR, BBL 0

When location OVR is reached, RAM register 1 will contain the sum of the two 16 digit numbers arranged from low
order digit to high order digit. The reason multi-digit numbers are arranged this way is that it is easier to add numbers
from low order to high order digit, and it is easier to increment addresses than to decrement them.

The first time through the program loop, index register pair 2 (index register 4 and 5) contains 0 and index register pair 3
(index registers 6 and 7) contains 16, referencing the first data characters of DATA RAM registers 0 and 1, respectively.

On succeeding repititions of the loop, index registers 5 and 7 are incremented, referenecing sequential data characters,
until all 16 digits have been added.

142 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

A variant of the subroutine is below - this time for an arbitary number of 16 digit numbers. The only difference is the
addition of an DAA instruction.

AD, FIM 2P 0 / REG PAIR 2P RAM CHIP 0 OF REG 0
FIM 3P 16 / REG PAIR 3P RAM CHIP 0 OF REG 1
CLB / SET CARRY=0
XCH 8 / SET DIGIT COUNTER = 0

AD1, SRC 2P / SELECT RAM REG 0
RDM / READ DIGIT TO ACCUMULATOR
SRC / SELECT RAM REG 1
ADM / ADD DIGIT + CARRY TO ACCUMULATOR
DAA / ADJUST FOR DECIMAL
WRM / WRITE RESULT TO REG 1
INC 5 / ADDRESS NEXT CHARACTER OF RAM REG 0
INC 7 / ADDRESS NEXT CHARACTER OF RAM REG 1
ISZ 8 AD1 / BRANCH IF DIGIT COUNTER < 16 (NON ZERO)

OVR, BBL 0

10.18.6 Multi-Digit Subtraction

The carry bit may be used to add unsigned data quantities of arbitrary length.

Consider the following subtraction of two 4-digit hexadecimal numbers:

5 4 B A
1 4 F 6 -
-------
3 F C 4

This subtraction may be performed by first setting the carry bit = 1. Then for each pair of digits, the program must
complement the carry bit and perform the subtraction. By this process, the carry bit will adjust the differences, taking
into account any borrows which may have occurred.

The process as applied to the above subtraction is as follows:

(1) Set carry bit = 1

(2) Complement carry bit (carry is now 0)

(3) Subtract low order digits

A 1 0 1 0
~6 1 0 0 1

~carry 1
-------

1 0 1 0 0 = 0x04
carry

(4) Complement resulting carry bit (carry is now 0)

(5) Subtract next digits

10.18. Programming Techniques 143



Pyntel4004, Release ENV_VERSION

B 1 0 1 0
~F 0 0 0 0

~carry 1
-------

0 1 1 0 0 = 0x0C
carry

(6) Complement resulting carry bit (carry is now 1)

(7) Subtract next digits

4 0 1 0 0
~4 1 0 1 1

~carry 0
-------

0 1 1 1 1 = 0x0F
carry

(8) Complement resulting carry bit (carry is now 1)

(9) Subtract next digits

5 0 1 0 1
~1 1 1 1 0

~carry 0
-------

1 0 0 1 1 = 0x03
carry

Thus, the correct result (0x3FC4) is obtained.

The following subroutine will perform a sixteen digit subtraction, making these assumptions:

• The two numbers to be subtracted are stored in DATA RAM chip 0, registers 0 and 1.

• Register 1 contains the subtrahend.

• The numbers are stored with the least significant digit first (in character 0) .

• The result will be stored least significant digit first in register 1 replacing the contents of register 1.

• Index register 8 will count the number of digits (up to 16) which have been subtracted.

SB, FIM 2P 0 / REG PAIR 2P RAM CHIP 0 OF REG 0
FIM 3P 16 / REG PAIR 3P RAM CHIP 0 OF REG 1
CLB / SET CARRY = 0
XCH 8 / SET DIGIT COUNTER = 0
STC / SET CARRY = 1

SB1, CMC / COMPLEMENT CARRY BIT
SRC 2P / SELECT RAM REG 0
RDM / READ DIGIT TO ACCUMULATOR
SRC 3P / SELECT RAM REG 1
SBM / SUBTRACT DIGIT + CARRY FROM ACCUMULATOR
WRM / WRITE RESULT TO REG 1

(continues on next page)

144 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

(continued from previous page)

INC 5 / ADDRESS NEXT CHARACTER OF RAM REG 0
INC 7 / ADDRESS NEXT CHARACTER OF RAM REG 1
ISZ 8 SB1 / BRANCH IF DIGIT COUNTER < 16 (NON ZERO)

OV, BBL 0

When location “OV” is reached, RAM register 1 will contain the difference of the two 16 digit numbers arranged from
low order digit to high order digit.

Note: Carry Bit

The carry bit from the previous subtraction is complemented by the CMC instruction each time through the loop.

10.18.7 Decimal Addition

Each 4 bit data quantity may be treated as a decimal number as long as it represents one of the decimal digits from 0
through 9, and does not contain any of the bit patterns representing the hexadecimal digits A through F.

In order to preserve this decimal interpretation when perfonning addition, the value 6 must be added to the accumulator
whenever an addition produces a result between 10 and 15. This is because each 4 bit data quantity can hold 6 more
combinations of bits than there are decimal digits.

The DAA (decimal adjust accumulator) instruction is provided for this purpose. Also, to permit addition of multi-digit
decimal numbers, the DAA adds 6 to the accumulator whenever the carry bit is set indicating a decimal carry from
previous additions. The carry bit is unaffected unless the addition of 6 produces a carry, in which case the carry bit is
set.

Example: Perform the decimal addition

4 6 9
3 2 9 +
---

7 9 8

1 Clear the carry and add the lowest-order digits

9 = 1 0 0 1
9 = 1 0 0 1

Carry = 0
---------

Result 0 0 1 0
Carry 1

2 Perform a DAA operation, which will add 6 to the accumulator. Since no carry is produced by this operation, the
carry bit is left unaffected (i.e. 1)

Accumulator = 0 0 1 0
6 = 0 1 1 0

Carry = 0
---------

(continues on next page)

10.18. Programming Techniques 145



Pyntel4004, Release ENV_VERSION

(continued from previous page)

Result 1 0 0 0 = 8
Carry 1

(since the DAA produced no carry, the bit is unaffected)

3 Add the next two digits

6 = 0 1 1 0
2 = 0 0 1 0

Carry = 1
---------

Result 1 0 0 1 = 9
Carry 0

4 Perform a DAA operation. Since the accumulator is not greater than 9, and the carry is not set, then no action occurs.

5 Add the next two digits

4 = 0 1 0 0
3 = 0 0 1 1

Carry = 0
---------

Result 0 1 1 1 = 7
Carry 0

6 Perform a DAA operation. Again, no action occurs. Thus, the correct result (798) is generated in three 4-bit data
characters.

Example Code (subroutine)

A subroutine which adds two 16 digit decimal numbers can be found here:

10.18.8 Decimal Subtraction

Each 4 bit data quantity may be treated as a decimal number as long as it represents one of the decimal digits 0 through
9. The TCS (transfer carry subtract) and DAA (decimal adjust accumulator) may be used to subtract two decimal
numbers and produce a decimal number. The TCS instruction permits subtraction of multi-digit decimal numbers.

The process consists of generating the ten’s complement of the subtrahend digit (the difference between the subtrahend
digit and 10 decimal), and adding the result to the minuend digit. For instance, to subtract 2 from 7, the ten’s complement
of 2 (10 - 2 = 8) is added to 7, producing 15 decimal which, when truncated to a 4 bit quantity gives 5 (the required
result). If a borrow was generated by the previous subtraction, the 9’s complement of the subtrahend digit is produced
to compensate for the borrow.

In detail, the procedure for subtracting one multi-digit decimal number from another is as follows:

1 Set the carry bit to 1 indicating no borrow.

2 Use the TCS instruction to set the accumulator to either 9 or 10 decimal.

3 Subtract the subtrahend digit from the accumulator, producing either the 9’ s or 10’ s complement.

4 Set the carry bit to 0.

146 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

5 Add the minuend digit to the accumulator.

6 Use the DAA instruction to make sure the result in the accumulator is in decimal format, and to indicate a borrow in
the carry bit if one occurred.

7 Save this resuIt.

8 If there are more digits to subtract, goto step 2, otherwise stop.

Example: Perform the decimal subtraction

5 1
3 8 -
---
1 3

1 Set the carry bit to 1

2 TCS sets accumulator = 1010b and carry = O

3 Subtract the subtrahend digit 8 from the accumulator

Accumulator = 1 0 1 0
~ 8 = 0 1 1 1

~ Carry = 1
---------

Result 0 0 1 0

4 Set the carry bit to 0

5 Add minuend digit 1 to accumulator

Accumulator = 0 0 1 0
1 = 0 1 1 1

Carry = 0
---------

Result 0 0 1 1
Carry 0

6 DAA leaves accumulator = 3 = first digit of result, and carry = 0, indicating that a borrow occurred

7 TCS sets accumulator =1001B and carry = 0

8 Subtract the subtrahend digit 3 from the accumulator

Accumulator = 1 0 0 1
~ 3 = 1 1 0 0

~ Carry = 1
---------

Result 0 1 1 0

9 Set carry = 0

10 Add minuend digit 5 to accumulator

Accumulator = 0 1 1 0
5 = 0 1 0 1

(continues on next page)

10.18. Programming Techniques 147



Pyntel4004, Release ENV_VERSION

(continued from previous page)

Carry = 0
---------

Result 1 0 1 1
Carry 0

11 DAA adds 6 to accumulator and sets carry = 1, indicating that no borrow occurred.

Accumulator = 1 0 1 1
6 = 0 1 1 0

---------
Result 0 0 0 1
Carry 1

Therefore the result of subtracting 38 from 51 is 13.

Example Code (subroutine)

The following subroutine will subtract one 16 digit decimal number from another, using the following assumptions.

• The minuend is stored least significant digit first in DATA RAM chip 0, register O.

• The subtrahend is stored least significant digit first in DATA RAM chip 0, register 1.

• The result will be stored least significant digit first in DATA RAM chip 0, register 0 replacing the minuend.

• Index register 8 will count the number of digits (up to 16) which have been subtracted.

SD, FIM 2P 0 / REG PAIR 2P = RAM CHIP 0, REG 0
FIM 3P 16 / REG PAIR 3P = RAM CHIP 0

CLB
XCH 8 / SET DIGIT COUNTER = 0
STC / SET CARRY = 1

SD1, TCS / ACCUMULATOR = 9 OR 10
SRC 3P / SELECT RAM REG 1
SBM / PRODUCE 9's OR 10's COMPLEMENT
CLC / SET CARRY = 0
SRC 2P / SELECT RAM REG 0
ADM / ADD MINUEND TO ACCUMULATOR
DAA / ADJUST ACCUMULATOR
WRM / WRITE RESULT TO REG 0
INC 5 / ADDRESS NEXT CHARACTER OF RAM REG 0
INC 7 / ADDRESS NEXT CHARACTER OF RAM REG 1
ISZ 8 SD1 / BRANCH IF DIGIT COUNTER < 16 (NON-ZERO)

DN BBL 0

148 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

Glossary

Term Definition
minuend The number that the subtrahend is being subtracted from
subtrahend The number that is being subtracted

10.18.9 Floating Point Numbers

The structure of DATA RAM chips is fully described in Section 2.3.3.

One use to which a 16-character DATA RAM register and its 4 status characters can be put is to store a 16 digit decimal
floating point number.

Such a number can be represented in the form:

± .DDDDDDDDDDDDDDDD * 10 ± EE

The 16 data characters of a RAM register could then be used to store the digits of the number, two status characters
could be used to hold the digits of the exponent, while the remaining two status characters would hold the signs of the
number and its exponent.

If a value of one is chosen to represent minus and a value of zero is chosen to represent plus, status characters 0 and
1 hold the exponent digits, status character 2 holds the exponent sign and status character 3 holds the number’s sign,
then the number

± .1234567890812489 * 10 -23

would appear in a RAM register as follows:

This describes some techniques which may be of help to the programmer:

Crossing Page Boundaries Subroutines Branch Table Pseudosubroutines Logical Operations Floating
Point Numbers Crossing Page Boundaries Multi Digit Subtraction Decimal Addition Decimal Subtrac-
tion

10.18. Programming Techniques 149



Pyntel4004, Release ENV_VERSION

10.19 Powers Of Two

2 n n 2 -n

1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125
16 4 0.062 5
32 5 0.031 25
64 6 0.015 625
128 7 0.007 812 5
256 8 0.003 906 25
512 9 0.001 953 125
1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25
4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5
16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125
65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5
1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25
16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25
134 217 728 27 0.000 000 007 450 580 596 923 828 125
268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25
1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5
4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125
17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25
68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125
1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25
4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5
17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25

continues on next page

150 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

Table 3 – continued from previous page
2 n n 2 -n

35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5
140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25
281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5
1 125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
2 251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125
4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
9 007 199 254 740 992 53 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25
18 014 398 509 481 984 54 0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625
36 028 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5
72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25
144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125
288 230 376 151 711 744 58 0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25
1 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
4 611 686 018 427 387 904 62 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25
9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125

10.20 Powers Of Sixteen

16 n n 16 -n

1 0 1.000 00000 00000 00000 x 10 0

16 1 0.625 00000 00000 00000 x 10 -1

256 2 0.390 62500 00000 00000 x 10 -2

4 096 3 0.244 14062 50000 00000 x 10 -3

65 536 4 0.152 58789 06250 00000 x 10 -4

1 048 576 5 0.953 67431 64062 50000 x 10 -6

16 777 216 6 0.596 04644 77539 06250 x 10 -7

268 435 456 7 0.372 52902 98461 91406 x 10 -8

4 294 967 296 8 0.232 83064 36538 69628 x 10 -9

68 719 476 736 9 0.145 51915 22836 68518 x 10 -10

1 099 511 627 776 10 0.909 49470 17729 28237 x 10 -12

17 592 186 044 416 11 0.568 43418 86080 80148 x 10 -13

281 474 976 710
656

12 0.355 27136 78800 50092 x 10 -14

4 503 599 627 370
496

13 0.222 04460 49250 31308 x 10 -15

72 057 594 037 927
936

14 0.138 77787 80781 44567 x 10 -16

1 152 921 504 606
846 976

15 0.867 36173 79884 03547 x 10 -18

10.20. Powers Of Sixteen 151



Pyntel4004, Release ENV_VERSION

10.21 Powers Of 10 16

10 n n 10 -n

1 0 1.0000 0000 0000 0000
A 1 0.1999 9999 9999 999A
64 2 0.28F5 C285 5C28 F5C3 x 16 -1

3E8 3 0.4189 374B C6A7 EF9E x 16 -2

2710 4 0.68DB 8BAC 710c b296 x 16 -3

1 86A0 5 0.A7C5 AC47 1B47 8423 x 16 -4

F 4240 6 0.10C6 F7A0 B5ED 9D37 x 16 -4

98 9680 7 0.1A07 F29A BCAF 4858 x 16 -5

5F5 E100 8 0.2AF3 1DC4 6118 73BF x 16 -6

3B9A CA00 9 0.44B8 2FA0 9B5A 52CC x 16 -7

2 540B E400 10 0.6DF3 7F67 5EF6 EADF x 16 -8

17 4876 E800 11 0.AFEB FF0B CB24 AAFF x 16 -9

E8 D4A5 1000 12 0.1197 9981 2DEA 1119 x 16 -9

918 4E72 A000 13 0.1C25 C268 4976 81C2 x 16 -10

5AF3 107A 4000 14 0.2D09 370D 4257 3604 x 16 -11

3 8D7E A4C6 8000 15 0.480E BE7B 9D58 566D x 16 -12

23 86F2 6FC1 0000 16 0.734A CASF 6226 F0AE x 16 -13

163 4578 5D8A
0000

17 0.B877 AA32 36A4 B449 x 16 -14

DE0 B6B3 A764
0000

18 0.1272 5DD1 D243 ABA1 x 16 -14

8AC7 2304 89E8
0000

19 0.1D83 C94F B6D2 AC35 x 16 -15

10.22 Hexadecimal Decimal Integer Conversion

The table below provldes for direct conversions between hexadecimal integers in the range O-FFF and decimal integers
in the range 0-4095.

For conversion of larger integers, the table values may be added to the following figures:

Hex Decimal Hex Decimal
1 000 4 096 20 000 131 072
2 000 8 192 30 000 196 608
3 000 12 288 40 000 262 144
4 000 16 384 50 000 327 680
5 000 20 480 60 000 393 216
6 000 24 576 70 000 458 752
7 000 28 672 80 000 524 288
8 000 32 768 90 000 589 824
9 000 36 864 A0 000 655 360
A 000 40 960 B0 000 720 896
B 000 45 056 C0 000 786 432

continues on next page

152 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

Table 4 – continued from previous page
Hex Decimal Hex Decimal
C 000 49 152 D0 000 851 968
D 000 53 248 E0 000 917 504
E 000 57 344 F0 000 983 040
F 000 61 440 100 000 1 048 576
10 000 65 536 200 000 2 097 152
11 000 69 632 300 000 3 145 728
12 000 73 728 400 000 4 194 304
13 000 77 824 500 000 5 242 880
14 000 81 920 600 000 6 291 456
15 000 86 016 700 000 7 340 032
16 000 90 112 800 000 8 388 608
17 000 94 208 900 000 9 437 184
18 000 98 304 A00 000 10 485 760
19 000 102 400 B00 000 11 534 336
1A 000 106 496 C00 000 12 582 912
1B 000 110 592 D00 000 13 631 408
1C 000 114 688 E00 000 14 680 064
1D 000 118 784 F00 000 15 728 640
1E 000 122 880 1 000 000 16 777 216
1F 000 126 976 2 000 000 33 554 432

0 1 2 3 4 5 6 7 8 9 A B C D E F
000 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
010 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031
020 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047
030 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063
040 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079
050 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095
060 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111
070 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
080 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
090 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
0A0 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
0B0 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
0C0 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
0D0 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
0E0 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
0F0 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
100 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
110 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
120 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
130 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
140 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
150 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
160 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
170 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
180 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
190 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

continues on next page

10.22. Hexadecimal Decimal Integer Conversion 153



Pyntel4004, Release ENV_VERSION

Table 5 – continued from previous page
0 1 2 3 4 5 6 7 8 9 A B C D E F

1A0 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
1B0 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
1C0 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
1D0 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
1E0 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
1F0 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
200 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
210 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
220 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
230 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
240 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
250 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
260 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
270 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
280 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
290 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
2A0 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
2B0 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
2C0 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
2D0 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
2E0 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
2F0 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
300 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
310 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
320 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
330 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
340 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
350 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
360 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
370 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
380 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
390 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
3A0 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
3B0 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
3C0 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
3D0 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
3E0 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
3F0 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A0 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

continues on next page

154 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

Table 5 – continued from previous page
0 1 2 3 4 5 6 7 8 9 A B C D E F

4B0 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
4C0 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D0 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E0 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F0 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5A0 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B0 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
5C0 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5D0 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E0 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5F0 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6A0 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
6B0 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
6C0 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D0 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E0 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6F0 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7A0 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7B0 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

continues on next page

10.22. Hexadecimal Decimal Integer Conversion 155



Pyntel4004, Release ENV_VERSION

Table 5 – continued from previous page
0 1 2 3 4 5 6 7 8 9 A B C D E F

7C0 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7D0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E0 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F0 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A0 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8B0 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8C0 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D0 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8E0 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F0 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9A0 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9B0 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
9C0 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9D0 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9E0 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9F0 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
A00 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
A10 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AA0 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
AB0 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
AC0 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767

continues on next page

156 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

Table 5 – continued from previous page
0 1 2 3 4 5 6 7 8 9 A B C D E F

AD0 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AE0 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AF0 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
B00 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B10 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B40 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BA0 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BB0 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BC0 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BD0 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BE0 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BF0 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
C00 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C10 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CA0 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CB0 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
CC0 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CD0 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CE0 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CF0 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
D00 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
D10 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D20 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D30 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
D40 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D50 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D60 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D70 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
D80 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D90 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DA0 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DB0 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
DC0 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DD0 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551

continues on next page

10.22. Hexadecimal Decimal Integer Conversion 157



Pyntel4004, Release ENV_VERSION

Table 5 – continued from previous page
0 1 2 3 4 5 6 7 8 9 A B C D E F

DE0 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DF0 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
E00 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E10 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EA0 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EB0 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
EC0 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
ED0 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EE0 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EF0 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
F00 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
F10 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FA0 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FB0 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FC0 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FD0 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FE0 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FF0 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

10.23 Hexadecimal Arithmetic

158 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

Table 6: Hexadecimal Addition
0 1 2 3 4 5 6 7 8 9 A B C D E F
1 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10
2 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11
3 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12
4 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13
5 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14
6 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15
7 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16
8 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17
9 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18
A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19
B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A
C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B
D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C
E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E

Table 7: Hexadecimal Multiplication
1 2 3 4 5 6 7 8 9 A B C D E F
2 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E
3 06 09 0C 0F 12 15 18 1B 1E 21 24 27 2A 2D
4 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C
5 0A 0F 14 19 1E 23 28 2D 32 37 3C 41 46 4B
6 0C 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A
7 0E 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69
8 10 18 20 28 30 38 40 48 50 58 60 68 70 78
9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87
A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96
B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5
C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4
D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3
E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2
F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1

10.24 Pseudo Instructions

10.24. Pseudo Instructions 159



Pyntel4004, Release ENV_VERSION

10.24.1 Equate

The “equate” pseudo instruction is indicated by the character = (equals sign) written in the code field of an assembler
statement. No executable object code is generated by the pseudo instruction. It acts merely to provide the assembler
with information to be used subsequently while generating object code.

Description:

The symbol Sym is assigned the value Exp by the assembler. Whenever the symbol Sym is encountered subsequently
by the assembler, this value will be used.

The statements

CZ = 10
JCN CZ ADDR

are equivalent to the statement

JCN 10 ADDR

The statements

DAT = 5
LDM DAT

will load the value 5 into the accumulator

10.24.2 Origin

Two forms of the instruction are acceptable:

Form 1 Form 2

As shown above, the equals sign may appear in the “label” or the “code” field.

160 Chapter 10. MCS-4 Assembly Language Programming Manual



Pyntel4004, Release ENV_VERSION

Description:

The assembler’s location counter is set to the value of ‘Exp’. The next machine instruction or data byte generated will
be assembled at address ‘Exp’.

Label Code Operand
= 0

JUN LO
= 512

LO, LDM 7

The JUN instruction will be assembled in locations 0 and 1 of ROM or program RAM. The location counter is then
set to 512, causing the LDM instruction to be assembled at location 512, the first location on the second memory page.
The JUN will therefore cause a jump to location 512.

Note: The pseudo instruction also makes it possible to assemble constant data values into a program. For a description
of how to do this, !!!! see Section 3.2.2 !!!!

There are two pseudo instructions which recognised by the assembler:

Pseudo Instruction Description
Equate Assign a label to an expression.
Origin Determine where the next instruction will be located.

10.24. Pseudo Instructions 161



Pyntel4004, Release ENV_VERSION

162 Chapter 10. MCS-4 Assembly Language Programming Manual



CHAPTER

ELEVEN

INTEL 4004 OP-CODES

Table 1: Intel 4004 processor Op-Codes
Instruction Mnemonic 1st byte 2nd byte Modifiers
No Operation NOP 00000000
Jump Conditional JCN 0001CCCC AAAAAAAA C, A
Fetch Immediate FIM 0010RRR0 DDDDDDDD RP, D
Send Register Control SRC 0010RRR1 RP
Fetch Indirect FIN 0011RRR0 RP
Jump Indirect JIN 0011RRR1 RP
Jump Unconditional JUN 0100AAAA AAAAAAAA A
Jump to Subroutine SRC 0101AAAA AAAAAAAA A
Increment INC 0110RRRR R
Increment and Skip ISZ 0111RRRR AAAAAAAA R, A
Add ADD 1000RRRR R
Subtract SUB 1001RRRR R
Load LD 1010RRRR R
Exchange XCH 1011RRRR R
Branch Back and Load BBL 1100DDDD D
Load Immediate LDM 1101DDDD D
Write Main Memory WRM 11100000
Write RAM Port WMP 11100001
Write Program RAM WPM 11100011
Write ROM Port WRR 11100010
Write Status Char 0 WR0 11100100
Write Status Char 1 WR1 11100101
Write Status Char 2 WR2 11100110
Write Status Char 3 WR3 11100111
Subtract Main Memory SBM 11101000
Read Main Memory RDM 11101001
Read ROM Port RDR 11101010
Add Main Memory ADM 11101011
Read Status Char 0 RD0 11101100
Read Status Char 1 RD1 11101101
Read Status Char 2 RD2 11101110
Read Status Char 3 RD3 11101111
Clear Both CLB 11110000
Clear Carry CLC 11110001
Increment Accumulator IAC 11110010
Complement Carry CMC 11110011

continues on next page

163



Pyntel4004, Release ENV_VERSION

Table 1 – continued from previous page
Instruction Mnemonic 1st byte 2nd byte Modifiers
Complement Accumulator CMA 11110100
Rotate Left RAL 11110101
Rotate Right RAR 11110110
Transfer Carry and Clear TCC 11110111
Decrement Accumulator DAC 11111000
Transfer Carry Subtract TCS 11111001
Set Carry STC 11111010
Decimal Adjust Accumulator DAA 11111011
Keyboard Process KBP 11111100
Designate Command Line DCL 11111101

Note: Modifiers

• A = Address

• C = Condition

• D = Data

• R = Register

• RP = Register Pair

164 Chapter 11. Intel 4004 Op-Codes



CHAPTER

TWELVE

THE ASCII TABLE

The 4004 uses a seven-bit ASCII code, which is the normal 8 bit ASCII code with the parity (high order) bit always
reset.

Table 1: ASCII table
Graphic or Control ASCII (Hexadecimal)
NULL 00
SOM 01
EOA 02
EOM 03
EOT 04
WRU 05
RU 06
BELL 07
FE 08
H.Tab 09
Line Feed 0A

V. Tab
0B

Form 0C
Return 0D
S0 0E
S1 0F
DCO 10
X-On 11
Tape Aux. On 12
X-Off 13
Tape Aux. Off 14
Error 15
Sync 16
LEM 17
S0 18
S1 19
S2 1A
83 1B
S4 1C
S5 1D

continues on next page

165



Pyntel4004, Release ENV_VERSION

Table 1 – continued from previous page
Graphic or Control ASCII (Hexadecimal)
S6 1E
S7 1F
ACK 7C
Alt. Mode 7D
Rubout 7F
! 21
“ 22
# 23
$ 24
% 25
& 26
‘ 27
( 28
) 29
* 2A
+ 2B
, 2C
- 2D
. 2E
/ 2F
: 3A
; 3B
< 3C
= 3D
> 3E
? 3F
[ 5B
/ 5C
] 5D

5E

5F

@ 40
blank 20
0 30
1 31
2 32
3 33
4 34
5 35
6 36
7 37
8 38
9 39
A 41
B 42
C 43
D 44

continues on next page

166 Chapter 12. The ASCII Table



Pyntel4004, Release ENV_VERSION

Table 1 – continued from previous page
Graphic or Control ASCII (Hexadecimal)
E 45
F 46
G 47
H 48
I 49
J 4A
K 4B
L 4C
M 4D
N 4E
O 4F
P 50
Q 51
R 52
S 53
T 54
U 55
V 56
W 57
X 58
Y 59
Z 5A

167



Pyntel4004, Release ENV_VERSION

168 Chapter 12. The ASCII Table



CHAPTER

THIRTEEN

INDICES AND TABLES

• genindex

• modindex

• search

169


	Intel 4004 Chip History
	MCS-4
	Busicom 141-PF

	The Intel 4001 Chip
	The Intel 4002 Chip
	The Intel 4003 Chip
	The Intel 4004 Chip
	Instruction Set Format
	Machine instructions
	Input/Output, RAM, and Accumulator Group instructions


	MCS-4 System Interconnections
	Chip Packaging and characteristics
	MCS-4 chipset hardware characteristics
	4001 Hardware Characteristics
	4002 Hardware Characteristics
	4003 Hardware Characteristics
	4004 Hardware Characteristics

	Overview of Pyntel4004
	Error Messages
	Errors
	Configuration Files

	MCS-4 Assembly Language Programming Manual
	Acknowledgements
	Glossary of Terms
	Introduction
	Computer Organization
	Working (Index) Registers
	Accumulator
	Memories
	Program Random Access Memory (PRAM)
	Data Random Access Memory (RAM)
	Read-Only Memory (ROM)

	The Stack
	Writing An Address To The Stack
	Reading An Address From The Stack

	Input and Output
	Computer Program representation in Memory
	Memory Addressing
	Direct Addressing
	Same Page Addressing
	Indirect Addressing
	Immediate Addressing
	Program RAM Addressing
	Data RAM Addressing
	Subroutines and use of the Stack for Addressing

	Carry Bit
	The 4004 Instruction Set
	How Assembly Language is Used
	Statement Mnemonics
	Label Field
	Code Field
	Operand Field
	Comment Field

	Data Statements
	Constant Data
	Instruction Summary
	Index Register Instructions
	FIN
	INC

	Index Register To Accumulator Instructions
	ADD
	SUB
	LD
	XCH

	Accumulator Instructions
	CLB
	CLC
	IAC
	CMC
	CMA
	RAL
	RAR
	TCC
	DAC
	TCS
	STC
	DAA
	KBP

	Immediate Instructions
	FIM
	LDM

	Transfer Of Control Instructions
	JUN
	JIN
	JCN
	ISZ

	Subroutine Linkage Instructions
	JMS
	BBL

	Nop Instructions
	NOP

	Memory Selection Instructions
	SRC
	DCL

	Io And Ram Instructions
	WRM
	WMP
	WRR
	WPM
	WRn
	RDM
	RDR
	RDn
	ADM
	SBM


	Instruction Machine Codes
	Programming Techniques
	Crossing Page Boundaries
	Subroutines
	Branch Table Pseudosubroutines
	Logical Operations
	Logical AND
	Logical OR
	Logical XOR

	Multi-Digit Addition
	Multi-Digit Subtraction
	Decimal Addition
	Decimal Subtraction
	Floating Point Numbers

	Powers Of Two
	Powers Of Sixteen
	Powers Of 10 16
	Hexadecimal Decimal Integer Conversion
	Hexadecimal Arithmetic
	Pseudo Instructions
	Equate
	Origin


	Intel 4004 Op-Codes
	The ASCII Table
	Indices and tables

