Pyntel4004
Release ENV_VERSION

Andrew Shapton

Jun 28, 2022

10

11

12

13

Intel 4004 Chip History

The Intel 4001 Chip

The Intel 4002 Chip

The Intel 4003 Chip

The Intel 4004 Chip

MCS-4 System Interconnections

Chip Packaging and characteristics
MCS-4 chipset hardware characteristics
Overview of Pyntel4004

MCS-4 Assembly Language Programming Manual
Intel 4004 Op-Codes

The ASCII Table

Indices and tables

CONTENTS

11
15
19
27
29
31
47
51
163
165

169

Pyntel4004, Release ENV_VERSION

CONTENTS 1

Pyntel4004, Release ENV_VERSION

2 CONTENTS

CHAPTER
ONE

INTEL 4004 CHIP HISTORY

In 1969 Busicom contracted Intel to design a set of chips to be used in a new high perfomance calculator. Ted Hoff,
Federico Faggin and Stan Mazor came up with a design that involved four different chips. The CPU was eventually to
be called a microprocessor.

Later Intel negotiated for a return of the rights for the chips, which had gone to Busicom in the original contract.
The 4000 Family (A.K.A. Busicom Chip Set / MCS-4 Chip Set)
The 4000 family consisted of four different chips:

* a2048-bit ROM with a 4-bit programmable input-output port (4001)

* a4-registers x 20-locations x 4-bit RAM data memory with a 4-bit output port (4002)

* an input-output expansion chip, consisting of a static shift register with serial input and serial and parallel output
(4003)

* a4-bit CPU chip (4004)

Other chips in the 4xxx family were:
e an 8-bit address latch for access to standard memory chips, and one built-in 4-bit chip select and I/O port (4008)
* aprogram and I/O access converter to standard memory and I/O chips (4009)

an 8192-bit(1024 x 8) ROM w/ 4-bit I/O Ports (4208)

* a general purpose Bye I/O port (4211))
* a keyboard/display interface (4269)

Pyntel4004, Release ENV_VERSION

* a memory interface (combined functions of 4008 and 4009)(4289)

¢ an 8k mask-programming ROM (4308)

a 16384-bit (2048 x 8) Static ROM (4316)

a 2048-bit (256 x 8) EPROM (4702)

a 5.185 MHz Clock Generator Crystal for 4004/4201A or 4040/4201A (4801)

All the chips were packaged in 16-pin, dual-in-line packages. This package restriction was imposed by Intel’s man-
agement, who at the time considered any package with more that 16 pins uneconomical, despite the fact that 40-pin
packages were widely used by other semiconductor companies.

This unfortunate choice considerably constrained the performance of the system. Address and data had to be multi-
plexed onto the pins (one of the claims of Patent number US3821785), causing a major penalty in the instruction
cycle execution.

The instruction cycle of 10.8 microseconds could have been easily reduced to 4 microseconds by a more appropriate
package choice.

The 4000-family was completed by March 1971, in production by June 1971 and introduced to the general market in
November 1971 with the name MCS-4.

1.1 MCS-4

The MCS-4 is a microprogrammable computer set designed for applications such as test systems, peripherals, terminals,
billing machines, measuring machines, numeric and process control.

The 4004 CPU, 4003 Shift Register, and 4002 RAM are standard building blocks. The 4001 ROM contains the custom
microprogram and is implemented as a metal mask according to customer specifications.

MCS-4 systems readily interface to switches, keyboards, displays, teletypewriters, printers, readers, A-D converters
and other popular peripherals.

A system built with the MCS-4 micro computer set can have up to 4k * 8-bit ROM words, 8192 * 4-bit RAM characters,
and 128 I/0O lines without requiring any interface logic. By adding a few gates, the MCS-4 can have up to 48 RAM and
ROM packages in any combination, and 192 I/O lines. The minimum configuration consists of one CPU and one 256
* 8-bit ROM.

The MCS-4 has a very powerful instruction set that allows both binary and decimal arithmetic. It includes conditional
branching, jump to subroutine, and provides for the efficient use of ROM look-up tables by indirect fetching.

The Intel MCS-4 micro computer set (4001/2/3/4) is fabricated with Silicon Gate Technology . This low threshold
technology allows the design and production of higher performance MOS circuits and provides a higher functional
density on a monolithic chip than conventional MOS technologies.

4 Chapter 1. Intel 4004 Chip History

https://en.wikipedia.org/wiki/Self-aligned_gate#Development_of_the_silicon-gate_technology_at_Fairchild
https://en.wikipedia.org/wiki/MOSFET#MOS_integrated_circuit_(MOS_IC)

Pyntel4004, Release ENV_VERSION

1.2 Busicom 141-PF

In the case of the Busicom 141-PF (also marketed as the NCR-18-36), the ROM contained the custom microprogram-
ming to allow the MCS-4 chipset to operate as a calculator.

1.2. Busicom 141-PF 5

Pyntel4004, Release ENV_VERSION

6 Chapter 1. Intel 4004 Chip History

CHAPTER
TWO

THE INTEL 4001 CHIP

The Intel 4001 chip was introduced in 1971 as part of the Intel 4000 family; a fully decoded static Random Access
Memory chip, fabricated with P-channel silicon gate MOS technology

It is a 2048-bit metal mask programmable ROM providing custom microprogramming capability for the MCS-4 micro
computer set. It is organised as 256 x 8-bit words.

Logically, the Intel 4001 is set out as shown:

https://en.wikipedia.org/wiki/Programmable_logic_device

Pyntel4004, Release ENV_VERSION

©
SYNC ®- TIMING s
NN o
Do @——<— DATA ADDRESS ROM
D; @——e— BUS REGISTER ARRAY
D, @—— /0 AND 16X 16X 8
D3 @——<>— BUFFER DECODER
A ‘
MO l > MUX
® — |
v
/0o @—e> ®-
/0, @——<>——@1 INPUT —
- —@ —®
1/0, @—e ¢ PORT CONTROL Voo
/0; @— B +~————OGND
L
—> OUTPUT
porT [
cL 1 l
RESET®
The circled numbers relate to the pins as shown below:
Reset Sync-Out
lear inpu
c|/0 LinZst Po Clk Phase 2
Memory
Control { CM Clk Phase 1
Input
-15v Voo Vs
Output 0, D2 Data
Lines > Bus
0 D1 ve
. Qo DO _J

Address and data are transferred in and out by time multiplexing on 4 data bus lines. Timing is internally generated
using two clock signals ¢ | and ¢ ,, and a SYNC signal supplied by the 4004. Addressed are received from the CPU
on three time periods following SYNC, and select 1 out of 256 words and 1 out of 16 ROMs.

For that purpose, each ROM is identified #0, 1, 2, through 15 by metal option. A Command Line (CM) is also provided
and its scope is to select a ROM bank (group of 16 ROM’s).

During the two time periods (M | & M ;) following the addressing time, information is transferred from the ROM to
the data bus lines.

A second mode of operation of the ROM is as an Input/output control device. In that mode, a ROM chip will route
information to and from data bus lines in and out of 4 I/O external lines. Each chip has the capability to identify itself
for an I/O port operation, recognise an I/O port instruction and decide whether it is an Input or Output operation and

8 Chapter 2. The Intel 4001 Chip

Pyntel4004, Release ENV_VERSION

execute the instruction.

An external signal (CL) will asynchronously clear the output register during normal operation. All internal flip flops
(including the output register) will be reset when the RESET line goes low (negative voltage).

Each I/O pin can be uniquely chosen as either an input or output port by metal option when ordering. An example
order form can be downloaded here Direct or inverted input or output is optional. An on-chip resistor at the input pins
connected to either V 44 or V is also optional (see ordering information on page 12).

Pyntel4004, Release ENV_VERSION

10 Chapter 2. The Intel 4001 Chip

CHAPTER
THREE

THE INTEL 4002 CHIP

The Intel 4002 chip was introduced in 1971 as part of the Intel 4000 family; a 320-bit MOS RAM and 4-bit output
port, fabricated with P-channel silicon gate MOS technology

The 4002 was designed to be used with other MCS-4/40 devices such as the 4004 CPU. The chip was available in
two different metal options 4002-1 and 4002-2 this was to make it possible to extend the chip selection so that 4pcs of
4002 chips could be connected to the 4004 CPU without any external chip selection logic. Although produced by Intel,
National Semiconductors was the only second source.

Logically, the Intel 4002 is set out as shown:

0 > © 0,
SYNC O— l ININGl 1 00,
REFRESH
Do @——<>—] DATA L
P1 @——BUS - . A':\I.\RhAAY
b, O ~— /0 g] 4X20X4
D3 (O——<>—] BUFFER I
Vo, © f » MUX
GNDO—— P ‘ | 1
l R/W
INSTRUCTION
DECODE &
1_ CONTROL
/00 @e———
1/0; @e¢=——— OUTPUT
/0, @¢————— PORT
/03 @ —— O
™M P,
RESET ©® ‘

The circled numbers relate to the pins as shown below:

11

Pyntel4004, Release ENV_VERSION

Reset Sync-Out
Chip Select
I?\pu(Po Clk Phase 2
Memory
Control { CM Clk Phase 1
Input
Voo Vs
(0; D3 ")
OLL.'tpu(< 0, b2 > Data
0, D1
g 0o DO J

The 4002 performs two functions. As a RAM, it stores 320 bits arranged in 4 registers of 20 x 4-bit characters each
(16 main memory characters and 4 status characters).

ONE OF THE 4 REGISTERS
IN THE RAM ARRAY
Register 0

MEMORY CHARACTER 0

0 THROUGH 15

T
MAIN MEMORY CHARACTERS

MEMORY CHARACTER 15

STATUS CHARACTER O

STATUS CHARACTER 3

T
STATUS CHARACTERS
0 THROUGH 3

4-bits

In the RAM mode, the operation is as follows: When the CPU executes an SRC instruction, it will send out the contents
of the designated index register pair during X , and X , as an address to RAM, and will activate | CM-RAM line at X
» for the previously selected RAM bank (see basic instruction cycle on page 5).

The data at X ; and X ;3 is interpreted as shown below:

12 Chapter 3. The Intel 4002 Chip

Pyntel4004, Release ENV_VERSION

XZ | X3
Ds D, Dy Do | Ds D, D, Do
Chip # Register # Main Memory Character #
(0 through 3) (0through 3) (0 through 15)

As a vehicle for communication with peripheral devices, it is provided with 4 output lines and associated control logic
to perform output operations.

The status character locations (0 through 3) are selected by the OPA portion of one of the I/O and RAM instructions.

For chip selection, the 4002 is available in two metal options, 4002-1 and 4002-2. An extra pin, P (, (which may be
hard wired to either V pp or V gg) is also available for chip selection.

The chip number is assigned as follows:

Ch|p# 40020pt|0n PO D3@X2 D2@X2
0 4002-1 GND 0 0
1 4002-1 V bp 0 1
2 4002-2 GND 1 0
3 4002-2 V op 1 1

Timing is internally generated using two clock signals X | and X ,, and a SYNC signal provided by the 4004. Internal
refresh circuitry maintains data levels in the cells.

All communications with the system is through the data bus. The I/O port permits data out of the system. When the
external RESET signal goes low, the memory and all static flip-flops (including the output registers) will be cleared.
To fully clear the memory, the RESET signal must be maintained for at least 32 memory cycles (32 x 8 clock periods).

Note: Previously Selected Ram Bank Bank switching is accomplished by the CPU after receiving a “DCL” (designate
command line) instruction. Prior to the execution of the DCL instruction the desired CM-RAM ; code has been stored
in the accumulator (for example, through an LDM instruction). During DCL the CM-RAM | code is transferred from
the accumulator to the CM-RAM register. The RAM bank is then selected starting with the next instruction.

13

Pyntel4004, Release ENV_VERSION

14 Chapter 3. The Intel 4002 Chip

CHAPTER
FOUR

THE INTEL 4003 CHIP

The Intel 4003 chip was introduced in 1971 as part of the Intel 4000 family; 10-bit Serial-in/Parallel-out, Serial-out
Shift Register, fabricated with P-channel silicon gate MOS technology.

The 4003 was designed to be used with other MCS-4/40 devices such as the 4004 CPU. Although produced by Intel,
National Semiconductors was the only second source.

Logically, the Intel 4003 is set out as shown:

15

Pyntel4004, Release ENV_VERSION

Voo GND

Q
BINARY GEN. & T ?
CPO— DELAY POWER ON CLEAR

cP ?@ ¥ 1

DATA IN @—> 10 BIT SHIFT REGISTER

—>@® SERIAL OUT

A 4

DELAY

E ENABLE GATES

SONRREE

Q Q Q@ Q0 O Q QO q Q Qq

The circled numbers relate to the pins as shown below:

Qs Q,
Parallel
QG Q3 Output
Parallel
Output < Q; Q,
Qg Vss
\. Q
Parallel
Output
0, Q
SerialOut O, Data In

Enable Input Op Clock Pulse Input

The 4003 is a 10-bit static shift register with serial-in, parallel-out and serial-out data.

Its function is to increase the number of output lines to interface with I/O devices such as keyboards, displays, printers,
teletypes, switchers, readers, A-D converters, etc.

Data is loaded serially and is available in parallel on 10 output lines which are accessed through enable logic. When
enabled (E = low), the shift register contents is read out; when not enabled (E = high), the parallel-out lines are at V
ss- The serial-out line is not affected by the enable logic.

Data is also available serially permitting an indefinite number of similar devices to be cascaded together to provide
shift register length multiples of 10.

The data shifting is controlled by the CP signal. An internal power-on-clear circuit (Patent number US3821785)

16 Chapter 4. The Intel 4003 Chip

Pyntel4004, Release ENV_VERSION

will clear the shift register (Q ; = V ss) between the application of a supply voltage and the first CP signal.

17

Pyntel4004, Release ENV_VERSION

18 Chapter 4. The Intel 4003 Chip

CHAPTER
FIVE

THE INTEL 4004 CHIP

19

Pyntel4004, Release ENV_VERSION

5.1 Instruction Set Format

5.1.1 Machine instructions

The Intel 4004 chip Machine Instructions consist of:
* 1 word instructions - 8 bits requiring 8 clock periods (instruction cycle)
* 2 word instructions - 16 bits requiring 16 clock periods (2 instruction cycles)

Each instruction is divided into two 4 bit fields. The upper 4 bits is the OPR field containing the operation code. The
lower 4 bits is the OPA field containing the modifier.

For 2 word instructions, the second word contains the address information or data.

The upper 4 bits (OPR) will always be fetched befor the lower 4 bits (OPA) during M | and M , times respectively.

One Word Instructions

D; D, D; Db D3 D, D; Do
XIX XX XXX X

OPR OPA

OPCode Modifier

Index Register Address

XIXIXIX]|r r r &

Index Register Pair

XIX[XIX] R &%«

Data

20 Chapter 5. The Intel 4004 Chip

Pyntel4004, Release ENV_VERSION

Two Word Instructions

D; D, D; Dp D3 D, D1 Do D; D, D; Dg D3 D, D; Dg
XIXIXIXIXIX XX XIXIXIXIXIX]X]X
OPR OPA OPR OPA
OPCode Modifier OPCode Modifier

Upper Address Middle Address Lower Address
XIXIXIX]A; A; A; A, A A, A A A A A A,
OR
Condition Middle Address Lower Address
XIX|X|X]c.c, ¢ ¢, A Ay Ay A JAL AL AL A
OR
Index Register Address Middle Address Lower Address
XIXIXIX|R R R R A A, A A AL A ALA,
OR
Index Register Pair Address Upper Data Lower Data
XIXIX|X]|R R R X D, D, D, D,| D, D, D, D,

5.1.2 Input/Output, RAM, and Accumulator Group instructions

In these instructions (which are all 1 word),the OPR contains a 4 bit code which identifies either the I/O instruction or
the accumulator group instruction, and the OPA contains a 4 bit code which identifies the operation to be performed.
The table below illustrates the contents of each 4 bit field:

I/0 and Accumulator Group Instructions
D3 Dz D1 Do D3 DZ Dl DO

XIXIXX XXX X

OPR OPA

/O and RAM 11|1]o|x|x|x]|X

Instructions

Acccumulator 121111 IXIXIXIX

Group Instructions

Where “X” is either “0” or “1”

The Intel 4004 chip was introduced in 1971 as part of the Intel 4000 family; 4-bit central processing unit (CPU),
fabricated with P-channel silicon gate MOS technology.

The 4004 was designed to be used with other members of the MCS-4/40 family (4001, 4002, 4003).

The packaging of the Intel 4004 (and the Second Source manufacturers) is shown below:

5.1. Instruction Set Format 21

Pyntel4004, Release ENV_VERSION

Manufacturer Model Package

Manufacturer Model Package

Intel C4004 16-pin Ceramic DIP

Intel D4004 16-pin Ceramic DIP

Intel P4004 16-pin Plastic DIP

National Semiconductor INS4004D 16-pin Ceramic DIP

National Semiconductor INS4004J 16-pin side-brazed Ceramic DIP
Hitachi HD35404 16-pin DIP

Microsystems International MF7114

Internally, the 4004 is a 4-bit microprocessor with 8-bit instructions. It is clocked at a frequency of SO0KHz - 740KHz.
It contains 4096x8-bit ROM and 1280x4-bit RAM, with 2,300 transistors at a 10 micron definition. There are 45
instructions (46 including NOP) with a 4 level stack and sixteen 4-bit (or eight 8-bit) registers

For more detail, see the hardware characteristics or the instruction format.

Logically, the Intel 4004 is set out as shown:

Internal
BI-DIRECTIONAL
DATA BUS
DATA BUS
BUFFER
(4 BIT) INTERNAL DATA BUS
TEMPORARY INSTRUCTION STACK REGISTER
| ACCUMULATOR o |_ REGISTER O MULTIPLEXER
E PROGRAMCOUNTER@ 0 [o] 1
FLAG FLIP-FLOPS 4
rasruprors | £ soronm o o e
é STACK POINTER & 4 (o) 5 0
4
ARITHMETIC INSTRUCTION & STACKPOINTER o |5 6 ® 7 0
LOGIC UNIT DECODER -4
ADDRESS STACK ¥ 8 o 9 o
AND —e g
MACHINE bl 109 1 o
CYCLE
12 13
ENCODING (o] (.
14 o] 15 o,
SCRATCH PAD
DECIMAL ADJUST
TIMING &
CONTROL
vowen _| ' 10v ,_|
surmins | > v e oo
swe b, G, Reser
22 Chapter 5. The Intel 4004 Chip

Pyntel4004, Release ENV_VERSION

including external

CM-ROM CM-RAM, CM-RAM, CM-RAM, CM-RAM, ®; (O
% % ? 9 9
CM LOGIC AND BUFFERS TIMING @®SYNC
- INDEX
REGISTER | REGISTER |—
-~
INSTRUCTION 16X 4 RAM
DECODER
g s || ProGRAM
A
GND INSTRUCTION ax12ram | |
4-BIT REGISTER |
ADDER — —-_——r——
o OPR : OPA INCREMENTER
Do @——<—| DATA T 4 T_f
Dy @Q=——e>—] BUS ‘ $ _ i
D, @—e—]1/0 I
D3 ®——e>—] BUFFER|
TEST RESET
The circled numbers relate to the pins as shown below:
Reset Sync-Out
Test Clk Phase 2
Memory
Control { CM-ROM Clk Phase 1
Output
VDD VSS
(CM-RAM3 D3)
vemare | CM-RAM2 D2
Y Data
Control > Bus
Outputs /0
CM-RAM1 D1
(CM-RAMO Do

Pins described as follows:

5.1. Instruction Set Format 23

Pyntel4004, Release ENV_VERSION

Pin(s) Description

DO - D3 Bi-Directional Data Bus. All address and data communication between the processor and
the RAM and ROM chips occurs on these 4 lines

V ss Most positive voltage

Clk-Phase 1 Clk- | 2 phase clock inputs

Phase 2

SYNC SYNC Output. SYnchronisation signal generated by the processor and sent to the ROM and
RAM chips. It indicates the beginning of an instruction cycle

RESET RESET input. A logic ‘1’ at this input clears all flags and status registers and resets the

program counter to zero. To completely clear all address and index registers, RESET must
be applied for 64 clock cycles (8 macxhine cycles)

TEST TEST input. The logical state of this signal can be tested with the JCN instruction

CM-ROM CM-ROM Output. This is the ROM selection signal sent out by the processor when data is
required from program memory

V pp V pp - 15 +/-5% main supply voltage

CM-RAMO - CM- | CM-RAM Output. These are the bank selection signals for the 4001 and 4002 RAM chips
RAM3 in the system

The CPU consists of the following components:

Component

4-bit adder

64-bit (16 x 4) index register

48-bit Program Counter

Stack (nesting up to 3 levels if possible)
Address incrementer

8-bit instruction register and decoder
Control logic

g o |lalo|o|w

Information flows between the 4004 and the other chips through a 4-line data bus. One 4004 may be combined with
up to 48 ROM (4001) and RAM (4002) chips in any combination.

A typical machine cycle starts with the CPU sending a synchronisation signal (SYNC) to the ROMs and RAMs. Next,
12 bits of ROM address are sent to the data bus using three clock cycles (@ 0.75Mhz). The address is then incremented
by one and stored in the Program Counter.

The selected ROM sends back 8 bits of instruction or data during the following two clock cycles.

This information is stored in two registers: OPR and OPA. The next three clock cycles are used to execute the instruction.
(See Basic Instruction Cycle on Page 5.)

The ROM bank is controlled by a command ROM control signal (CM-ROM) and up to four RAM banks are controlled
by four RAM control signals (CM-RAM o, CM-RAM |, CM-RAM ,, CM-RAM 3)

Bank switching is accomplished by the execution of a “DCL” instruction.

An input test signal (TEST) is used in conjunction with the jump on condition ("JCN”) instruction. An external RESET
signal is used to clear all registers and flip-flops. To fully clear all registers, the RESET signal must be applied for at
least 8 memory cycles (8 x 8 clock periods). After RESET the program will start from “0” step and CM-RAM (will
be selected.

The instruction repertoire of the 4004 consists of :

24 Chapter 5. The Intel 4004 Chip

Pyntel4004, Release ENV_VERSION

Instruction Type Number
Machine instruc- | 16
tions (5 of which are
double length)
Accumulator group | 14
instructions

Input/output and | 16
RAM instructions

Total 45
No-Operation 1
TOTAL 46

Note: Bank Switching Bank switching is accomplished by the CPU after receiving a “DCL” (designate command
line) instruction. Prior to the execution of the DCL instruction the desired CM-RAM ; code has been stored in the
accumulator (for example, through an LDM instruction). During DCL the CM-RAM ; code is transferred from the
accumulator to the CM-RAM register. The RAM bank is then selected starting with the next instruction.

5.1. Instruction Set Format

25

Pyntel4004, Release ENV_VERSION

26

Chapter 5. The Intel 4004 Chip

CHAPTER
SIX

MCS-4 SYSTEM INTERCONNECTIONS

The MCS-4 uses a 10.8 sec instruction cycle. The CPU (4004) generates a synchronisation (SYNC) signal, indicating
the start of an instruction cycle, and sends it to the ROMs (4001) and RAMs (4002).

Basic instruction execution requires 8 or 16 cycles of a 750 kHz clock. In a typical sequence, the CPU sends 12 bits of
address to the ROMs in three cycles (A 1, A », A 3). The selected ROM sends back 8 bits of instruction (OPR, OPA) to
the CPU in the next two cycles (M |, M ,). The instruction is then interpreted and executed in the final 3 cycles (X |,
X2, X3).

The CPU, RAMs and ROMs can be controlled by an external RESET line. While RESET is activated the contents of
the registers and flip-flops are cleared. After REST, the CPU will start from address 0 and CM-RAM) is selected.

The MCS-4 can have up to 4K x 8-bit ROM words, 1280 x 4-bit RAM characters and 128 I/O lines, without requiring
any interface logic. By adding a few extra gates, the MCS-4 can have up to 48 RAM and ROM packages in any
combination and 192 I/O lines.

The 4001, 4002, and 4004 are interconnected by a 4-line data bus (D ¢, D |, D ,, D 3) used for all information flow
between the chips except for the control signals sent by the CPU on 6 additional lines. The interconnection of the
MCS-4 system is shown below. Note that an expanded configuration is shown. The minimum system configuration
consists of one CPU (4004), and one ROM (4001). The timing diagram below shows the activity on the data bus during
each clock period, and how a basic instruction rate is subdivided.

Each data bus output buffer has 3 possible states - “1”, “0”, and “floating”. At any given time, only one output buffer
is allowed to drive a data line, therefore, all the other buffers must be in a floating condition. However, more than one
input buffer per data line can receive data at the same time.

The MCS-4 has a very powerful instruction set that allows both binary and decimal arithmetic. It allows conditional
branching, jump to subroutine and provides for the efficient use of ROM look up tables by indirect fetching. Typically,
2 8-bit numbers can be added in 850 w secs.

27

Pyntel4004, Release ENV_VERSION

| Voo GND &, &
SYNC 00 1 P
CM-ROM 4004 = l l t l
T RESET
CM-RAM, ouT ouT ouT
1/0 Voo
A A y
4001 SYNC YNC YNC
> Py 4002-1 #0 4002-2 #2 == 4002-2 #3
#0 ” = RESET RESET ’ RESET
cL
SYNC RESET
I/0
<+« N Voo SYNC
- 1001 o] 40022 3
< #1 RESET K RESET
T c
SYNC RESET
CM-RAM,
SYNC A SYNC A Voo SYNC A SYNC Voo
=1 40021 ”-I__IEO =3 40021 1 —] 20022 "z-ljia =3 w0022 13 |—_|
RESE = RESE RESE = RESE
SYNC SYNC Voo SYNC SYNC Voo
4001 —p| 4002-1 COJTQ _.J 4002-1 #1 —p| 4002-2 lZJj:u —| 4002-2 #3 | I
RESE = RESE C RESE:I_ = RESE C
#15 ! Wi
CM-RAM,
o
SVNCt 1RESET DoD;D,D; cp
Zs‘jolAL DATA IN 4003 seriaLoUT 4003 ZEJTlAL
ENABLE
INSTRUCTION CYCLE
Instruction sent Execution of Instruction
Address sent from ROM to CPU to CPU from ROM Data is operated on in the CPU, or
‘&’I Data or address is sent to/from CPU
| | | | |
A4
SYNC
Memory
Su bCyCIeS X3 Al AZ A3 Ml M2 Xl XZ X3
If IOR™ the
i The selected 4001 is enabled The CPU is selected The CPUis
Device The CPU is enabled enabled 4001 or 4002 enabled
COntrO”ing are ena.bled,
otherwise
Data Bus the CPU is
Output enabled
Data Bus Lower 4-bit Middle 4-bit Higher 4-bit Instruction to CPU OPA Out Data or Address|Address to
address to address to address to toROMsand |RAMs if SRC?
Contents ROM:s. ROMS. ROMs. (Chip RAM:s if 10 or
select code) OPR to CPU OPA to CPU (Not Used) [src@
and ROMs
and RAMs if Data to CPU if
1o IOR®
(1) 10 instructions control the flow of information between the accumulator in the CPU, I/O lines in ROMs and RAMs and RAM storage.
I0OR stands for I/0 Read. In this case, the CPU will receive data from RAM storage locations or I/O input lines of 4001
(2) The SRC instruction designates the chip number and address for a following 1/0 instruction.

28 Chapter 6. MCS-4 System Interconnections

CHAPTER
SEVEN

CHIP PACKAGING AND CHARACTERISTICS

Each of the chips in the MCS-4 series have the same packaging dimensions depending on the construction:

Ceramic Packaging

735
‘ 830

—1 /. I —l—

L=] | —] | = Rl | =] Rl | —] el VYV @
PIN 1
050 .055
260
045 MAX 125 \ }4—»‘
e ! 295
’ | | > 1
200
— Y MAX
015 | —>//+— o010+ .002
023 A00MIN 020
¥ 060
| | 290
010 — e |‘ 410 v
065 K .100+.010 032
TYP. REF.

29

Pyntel4004, Release ENV_VERSION

Plastic Packaging

745
.855
PIN 1
e | - r— e B s | ———
.245
.060 / .070 REF. 255
.060/.125
REF.
= = = = = v

290 |

| 310 | 14025 REF.
................... I t L] \
125 200 T
155 MAX
015 — []+— 008
023 .100 MIN .020 .012
¥ wmN
>
025 .090 065 — L ‘iig |
063 110 032 | '
REF. TYP. REF.
30 Chapter 7. Chip Packaging and characteristics

CHAPTER
EIGHT

MCS-4 CHIPSET HARDWARE CHARACTERISTICS

8.1 4001 Hardware Characteristics

Absolute Maximum Ratings

Ambient Temperature Under Bias 0°Cto+70°C
Storage Temperature -55°Cto+125°C
Input Voltage and Supply Voltage with respectto V g5 | +0.5to -20 V
Power Dissipation 1.0W

Note that stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This
is a stress rating only and functional operation of the device at these or any other conditions above those indicated in
the operational sections of this specification is not implied.

D.C. and Operating Characteristics

T4=0°Cto70°C

Vss - Dpp =15V £ 5%

tepw =typ1 = 400nsec

logic “0” is defined as the more positive voltage (Vig, Vor)

logic “1” is defined as the more negative voltage (Vrr,, Vor); unless otherwise specified.

SUPPLY Current

Symbol Parameter Min Limit Typica
Ipp Average Supply Current 15
Input Characteristics
Irg Input Leakage Current
Vie Input High Voltage (except clocks) Vss -1.5
Vi Input Low Voltage (except clocks) 1%5%5)
Viac Input High Voltage Clocks Vss -1.5

31

Pyntel4004, Release ENV_VERSION

Table 1 - continued from previous page

Symbol Parameter Min Limit Typica
VirLe Input Low Voltage Clocks Vbbb
Output Characteristics - All outputs except I/O Pins
Iro Data Bus Output Leakage Current
Vou Output High Voltage Vss-0.5V Vss
Iop Data Lines Sinking Current 8 15
Vor Output Low Voltage, Data Bus, CM, Sync | Vgg-12
Ron Output Resistance, Data Line 0 Level 150
I/0O Input Characteristics
Ir; Input Leakage Current \
Vi Input High Voltage Vss -1.5V |
Irp Input Low Voltage, Inverting Input Vbb
Vio Input Low Voltage, Non-Inverting Input 1%5%5)
Vi CL Low Voltage 1%5%5)
R; Input Resistance, if used 10 18
R, W Input Resistance, if used 15 25
I/O Output Characteristics
Vor Output High Voltage Vgg -1.5V
Ron I/O Output “0” Resistance 1.2
Ior I/O Output “1” Sink current 2.5 5
Ior @ I/O Output “1” Sink current 0.8 3
Vor I/O Output Low Voltage Vpp -12
Capacitance
Cy Clock Capacitance 8
Cbs Data Bus Capacitance 9.5
Crn Input Capacitance
Cour Output Capacitance

Note: [1] R; is large signal equivalent resistance to (Vss — 4.85) V

[2] For Transistor-transistor logic (TTL) compatibility, use 12k€) external resistor to Vpp

32

Chapter 8. MCS-4 chipset hardware characteristics

https://en.wikipedia.org/wiki/Transistor\T1\textendash {}transistor_logic

Pyntel4004, Release ENV_VERSION

Typical D.C. Characteristics

POWER SUPPLY CURRENT

VS. TEMPERATURE

18]

tePW = tpD1 = 400 nsec
tpD2 = 150 nsec

OUTPUT CURRENT VS.
OUTPUT VOLTAGE

| T 1
Vpp = -15.0V

«

Ta = 0°C+— tpPW = tpD1 = 400 nsec —
1
+26°C

[=]
(o)
| \ g tpD2 = 150 nsec
~ 16 o
E B T +70°C
- w = _15.75V z \> v
E £ 7 ‘\\
5 1a \ ™~ £ \\\
o ~N N = AN
t N D TR
o
S ;
g 12 S \\ E SR
§ -14,25\/\\ I~~~ 3 -
10 [~ i
0 20 40 60 80 o -1 -2 -3 -4 5 -6 -7
AMBIENT TEMPERATURE (°C) ‘ OUTPUT VOLTAGE (V)
A.C. Characteristics
Tr=0°Cto70°C
Vss-Dpp =15V £+ 5%
Sym{ Parameter Min | Limit | Max Unit | Test Conditions
bol Typi-
cal
tcy | Clock Period 1.35 2.0 usec
tyr | Clock Rise Times 50 ns
tyr | Clock Fall Times 50 ns
topw| Clock Width 380 480 ns
typ1| Clock Delay t41 to tgo 400 550 ns
typ2 | Clock Delay t4o to 141 150 ns
tw Data-In, CM, SYNC Write | 350 | 100 ns
Time
ty Data-In, CM, SYNC Hold Time | 40 20 ns
[1,3]
tos | Set Time (Reference) 0 ns
[2]
tacc| Data-Out Access Time Data ns Cour = 500pF Data Lines 500pF
Lines SYNC CM-ROM CM- 930 930 SYNC 160pF CM-ROM 50pF CM-
RAM 930930 RAM
torg | Data-Out Hold Time 50 150 ns Cour = 20pF
trs | /O Input Set-Time 50 ns
tr | /O Input Hold-Time 100 ns
tp I/O Output Delay 1500 ns Cour = 100pF
tp I/O Output Lines Delay on 1500 ns Cour = 100pF
4] Clear

8.1. 4001 Hardware Characteristics

33

Pyntel4004, Release ENV_VERSION

Note: [1]¢{x measured with ¢4z = 10nsec

[2] T'acc is Data Bus, SYNC and CM-line output access time referred to the ¢ trailing edge which clocks these lines
out. tpg is the same output access time referred to the leading edge of the next ¢, clock pulse.

[3] All MCS-40 components which may transmit instruction or data to the 4004 at M5 and X5, always enter a float state
until the 4004 takes over the data bus at X; and X3 time. Therefore, the T requirement is always insured since each
component contributes 10 A of leakage current and 10pF of capacitance, which guarantees that the data bus cannot
change faster than 1V/usec

[4] CL on the 4001 is used to asynchronously clear the input flip-flops associated with the I/O lines.

4001 Timing Diagram

X A A, A; M, M, X Xz X3

@ U U U U U U L U U

OPA (4004)
AC (4040) If IOR Port/RAM
CPU enabled CPU enabled CPU enabled ROM enabled ROM enabled CPU enabled Else CPU enabled] CPU enabled

12 U U Ul Ul Ul UE* U s ™

arm | —F e e S [|
CM-ROM} | ¥ If1/0 If SRC

| J -t

|t|s

1/0 Input

s

— | f Ngh-Inverting

1/0 Output

Clear Line (CL)

34 Chapter 8. MCS-4 chipset hardware characteristics

Pyntel4004, Release ENV_VERSION

4001 Timing Diagram Detail

tep, tep,
te
% — Z— 10%
K —— 90%
f——> t%W
, 10%
¢2 / 90%
tw ty
Data Bus, CM \ 1 v
(Inputs) ANY /< True ANY o
tos— —
(Reference)
Data Bus, CM "Z:-W
(Outputs) A True i -
Tacc tou
8.2 4002 Hardware Characteristics
Absolute Maximum Ratings
Ambient Temperature Under Bias 0°Cto+70°C
Storage Temperature 55°Cto+125°C
Input Voltage and Supply Voltage with respectto V gs | +0.5to -20 V
Power Dissipation 1.0W

Note that stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This
is a stress rating only and functional operation of the device at these or any other conditions above those indicated in
the operational sections of this specification is not implied.

D.C. and Operating Characteristics

T4=0°Cto70°C

Vss - Dpp =15V £ 5%

topw =typ1 = 400nsec

logic “0” is defined as the more positive voltage (Vir, Vor)

logic “1” is defined as the more negative voltage (Vrr, Vor); unless otherwise specified.

SUPPLY Current

8.2. 4002 Hardware Characteristics 35

Pyntel4004, Release ENV_VERSION

Sym- | Parameter Min Limit Typi- | Max Unit Test Conditions
bol cal
Ipp Average Supply Current 17 33 mA Ty=25°C
Input Characteristics
I Input Leakage Current 10 1A Vit - Vbp
Vi Input High Voltage (except clocks) Vss -1.5 Vss \%
+0.3
Vio Input Low Voltage (except clocks) 1%5%5) Vss \'%
-5.5
Viac Input High Voltage Clocks Vss -1.5 Vss \%
+0.3
Vire Input Low Voltage Clocks 1%5%5) Vss \%
-13.4
Output Characteristics - All outputs except I/O Pins
Iro Data Bus Output Leakage Current 10 wA Vour =-12V
Vou Output High Voltage Vss- Vss v Capacitive Load
0.5V
Ior Data Lines Sinking Current 8 15 mA Vour =Vss
Vor Output Low Voltage, Data Bus, CM, | Vgg-12 Vss-65 | V Ior, =0.5mA
Sync
Rou Output Resistance, Data Line 0 150 250 Q Vour = Vss -
Level 0.5V
I/0 Output Characteristics
Vou Output High Voltage Vss v Ioyr =0
-1.5V
Ron I/0 Output “0” Resistance 1.2 2 kQ Vour - Vss -
0.5V
Ior, 1/O Output “1” Sink current 2.5 5 1A Vour - Vss -
0.5V
Ior, M | /O Output “1” Sink current 0.8 3 1A Vour - Vss -
4.85V
Vor I/O Output Low Voltage Vpp -12 Vss A% Toyr =50uA
-6.5
Capacitance
Cy Clock Capacitance 8 15 pF Vin - Vss
Cpgs Data Bus Capacitance 7 10 pF Vin - Vss
Cin Input Capacitance 10 pF Vin - Vss
Cour | Output Capacitance 10 pF Vin - Vss

Note: [1] For Transistor-transistor logic (TTL) compatibility, use 12k} external resistor to Vpp

36 Chapter 8. MCS-4 chipset hardware characteristics

https://en.wikipedia.org/wiki/Transistor\T1\textendash {}transistor_logic

Pyntel4004, Release ENV_VERSION

Typical D.C. Characteristics

OUTPUT CURRENT VS.
OUTPUT VOLTAGE

7 ’ T T T

Vpp = -15.0V
6 Ta=0°C1— tePwW = tyD1 = 400 nsec
+2l50C tpD2 = 150 nsec
I
5 +70°C

N
N
\,\\

/AN

OUTPUT CURRENT (mA) — Ig |
w

/

0 -1 2 -3 -4 -5 -6 -7
OUTPUT VOLTAGE (V)

A.C. Characteristics

Thr=0°Cto70°C
Vss -Dpp =15V £ 5%

POWER SUPPLY CURRENT
VS TFMPFRATURE

21

tePW = tpD1 = 400 nsec
tpD2 = 150 nsec

\\

~

POWER SUPPLY CURRENT (mA) — Ipp

17
N,OV \
15 P
-14.25V
13 T~
0 20 40 60 80

AMBIENT TEMPERATURE (°C)

Sym- Parameter Min | Limit | Max Unit | Test Conditions
bol Typi-
cal

tcy | Clock Period 1.35 2.0 usec

tyr | Clock Rise Times 50 ns

tyr | Clock Fall Times 50 ns

topw| Clock Width 380 480 ns

tsp1| Clock Delay t41 to tgo 400 550 ns

typ2 | Clock Delay ¢4 to 141 150 ns

tw | Data-In, CM, SYNC Write | 350 | 100 ns
Time

ty Data-In, CM, SYNC Hold Time | 40 20 ns

[1,3]

tos | Set Time (Reference) 0 ns

[2]

tacc| Data-Out Access Time Data ns Cour = 500pF Data Lines 500pF
Lines SYNC CM-ROM CM- 930 930 SYNC 160pF CM-ROM 50pF CM-
RAM 930930 RAM

toy | Data-Out Hold Time 50 150 ns Cour =20pF

tp I/0 Output Delay 1500 ns Cour = 100pF

Note: [1] ¢y measured with ¢4z = 10nsec

[2] T'acc is Data Bus, SYNC and CM-line output access time referred to the ¢, trailing edge which clocks these lines
out. tpg is the same output access time referred to the leading edge of the next ¢, clock pulse.

8.2. 4002 Hardware Characteristics

37

Pyntel4004, Release ENV_VERSION

[3] All MCS-40 components which may transmit instruction or data to the 4004 at M5 and X5 always enter a float state
until the 4004 takes over the data bus at X; and X3 time. Therefore, the T requirement is always insured since each
component contributes 104 A of leakage current and 10pF of capacitance, which guarantees that the data bus cannot
change faster than 1V/usec

4002 Timing Diagram

X; A A, As M, M, X, X, Xs

& U U U U U U L U U

OPA (4004)
AC (4040) If I0R Port/RAM
CPU enabled CPU enabled CPU enabled ROM enabled ROM enabled CPU enabled Else CPU enabled] CPY enabled

2 U U Ul Ul Ul P U sl ™

CM-ROM} | I [4 If /0 If SRC

to

4002 Timing Diagram Detail

tay, tap,
tor
—_—| | —te,
¢1 -1 10%
v
h——
i — 10%
%
tw ty
Data Bus, CM 1 v
(Inputs) ANY >< True ANY -
tos—f —
(Reference)
Data Bus, CM X True "Z:-W
(Outputs) A i -
tace ton

38 Chapter 8. MCS-4 chipset hardware characteristics

Pyntel4004, Release ENV_VERSION

8.3 4003 Hardware Characteristics

Absolute Maximum Ratings

Ambient Temperature Under Bias 0°Cto+70°C
Storage Temperature 55°Cto+125°C
Input Voltage and Supply Voltage with respectto V gs | +0.5to -20 V
Power Dissipation 1.0W

Note that stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This
is a stress rating only and functional operation of the device at these or any other conditions above those indicated in
the operational sections of this specification is not implied.

D.C. and Operating Characteristics

T4=0°Cto70°C

Vss - Dpp =15V £ 5%

tepw =typ1 = 400nsec

typ2 = 400nsec ; unless otherwise specified.

logic “0” is defined as the more positive voltage (Vig, Vorr)

logic “1” is defined as the more negative voltage (Vrr, Vor)

SUPPLY Current
Sym- | Parameter Min Limit Typi- | Max Unit| Test Conditions
bol cal [l
Ipp Average Supply Current 5.0 8.5 mA | Twr =Twg =8us;Ta
=25°C
Input Characteristics
I Input Leakage Current 10 A | Vip-Vpp
Vig Input High Voltage Vss - Vss
1.5 +0.3
Vit Input Low Voltage Vbbp Vss \'%
-4.2
I/O Output Characteristics
Iog Parallel Out Pins Sinking Current, | 0.6 1.0 A | Ioyr =0
“1” Level
Ior Serial Out Pins Sinking Current, | 1.0 2.0 uA | Vour - Vss - 0.5V
“1” Level
Vor I/0 Output Low Voltage Vss - | Vss -7.5 Vss \" Toyr = 50,LLA
11 -6.5
Ron Parallel Out Pins Resistance, “0” 400 750 kQ | Ioyr =0
Level
Ron Serial Out Resistance, “0” Level 650 1200 kQ | Vour - Vsg - 0.5V
Capacitance

8.3. 4003 Hardware Characteristics 39

Pyntel4004, Release ENV_VERSION

f=1MHz; V;n = 0V; T4 = 25°C Unmeasured Pins Grounded

Symbol | Test Typ. | Max | Unit
Cin Input Capacitance | 5 10 pF

Note: [1] Typical values are to T4 = 25° C and Nominal Supply Voltages

[2] For Transistor-transistor logic (TTL) compatibility, use 12k€) external resistor to Vpp

Typical D.C. Characteristics

POWER SUPPLY CURRENT OUTPUT CURRENT VS.
VS. TEMPERATURE OUTPUT VOLTAGE
’]
8 tWL = twH = Busec 12 Vpp=-150v |
T o WL = twH = 8 usec
—~ 6 9o
i |10
= \ 2 \
E [~ Vpp=-15.75 f 8 \\
s T 5 \ TA=0C
; \\ w‘ g 6 k\‘\ : +§5°c
& T~ e — o \ L +70°C
8 \.\ 2 \ \
z E AN
: ° NN
a .2
.
3
()}
0 20 40 60 80 o -1 -2 -3 -4 5 -6 -7
AMBIENT TEMPERATURE (°C) OUTPUT VOLTAGE (V)
A.C. Characteristics
Tr=0°Cto70°C
Vpp =15V £ 5%
Vss = GND
Symbol | Parameter Min | Limit Typical | Max Unit | Test Conditions
twi CP Low Width 6 10,000 | wsec
twr 1 | CP High Width 6 usec
tep Clock-On to Clock-Off Time | 3 usec
tpal?! CP to Data Set Delay 250 ns
ta1 CP to Data Out Delay 250 1750 ns
tao Enable to Data Out Delay 350 ns Cour =20pF
tas CP to Serial Out Delay 200 1250 ns Cour = 20pF
taa Enable to Data Out Delay 40 1.0 usec | Coyr = 20pF

Note: [1] ty m can be any time greater than 65

40 Chapter 8. MCS-4 chipset hardware characteristics

https://en.wikipedia.org/wiki/Transistor\T1\textendash {}transistor_logic

Pyntel4004, Release ENV_VERSION

[2] Data can occur prior to CP

4003 Timing Diagram

SYNC =

DATAIN —

DATA OUT
(©)

ENABLE o -
(E) !

SERIAL
ouT

8.4 4004 Hardware Characteristics

Absolute Maximum Ratings

Ambient Temperature Under Bias 0°Cto+70°C
Available with Operating Temp of -40° C to +85° C
Storage Temperature -55°Cto+100° C
Input Voltage and Supply Voltage with respectto V gs | +0.5to -20 V
Power Dissipation 1.0W

Note that stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This
is a stress rating only and functional operation of the device at these or any other conditions above those indicated in
the operational sections of this specification is not implied.

D.C. and Operating Characteristics

ThA=0°Cto70°C

Vss - Dpp =15V £ 5%

tepw =typ1 = 400nsec

logic “0” is defined as the more positive voltage Vi, Vor)

logic “1” is defined as the more negative voltage (Vrr,, Vor); unless otherwise specified.

8.4. 4004 Hardware Characteristics 41

Pyntel4004, Release ENV_VERSION

Sym- | Parameter Min Limit Typi- | Max Unit | Test Condi-
bol cal tions
Input Characteristics
Ipp | Average Supply Current \ | 30 | 40 | mA [T4=25°C
Input Characteristics
Ir; Input Leakage Current 10 wA | Vir -Vpp
Vig Input High Voltage (except clocks) Vss Vss A%
-1.5 +0.3
Vit Input Low Voltage (except clocks) Vbb Vss \"
-5.5
Viro Input Low Voltage Vbb Vss A\ 4004 Test input
-4.2
Vimc Input High Voltage Clocks Vss Vss \'%
-1.5 +0.3
Vire Input Low Voltage Clocks Vbbb Vss \'%
-134
Output Characteristics
Iro Data Bus Output Leakage Current 10 uA | Vour =-12V
Vou Output High Voltage Vss- Vss \" Capacitance
0.5V Load
Ior, Data Lines Sinking Current 8 15 mA | Vour =Vss
Ior, CM-ROM Sinking Current 6.5 12 mA | Voyr =Vss
Ior, CM-RAM Sinking Current 2.5 6 mA | Vour =Vss
Vor Output Low Voltage, Data Bus, CM, | Vgg-12 Vss-65 | V Ior, =0.5mA
Sync
Ron Output Resistance, Data Line 0 Level 150 250 Q Vour = Vss -
0.5V
Rou CM-ROM Output Resistance, Data Line 320 600 Q Vour = Vgg -
0 Level 0.5V
Rogy CM-RAM Output Resistance, Data Line 1.1 1.8 kQ | Vour = Vsg -
0 Level 0.5V
Capacitance
Cy Clock Capacitance 14 20 pF Vin - Vss
Cpgs Data Bus Capacitance 7 10 PF Vin - Vss
Crn Input Capacitance 10 pF Vin - Vss
Cour | Output Capacitance 10 pF | Vin-Vss

42 Chapter 8. MCS-4 chipset hardware characteristics

Pyntel4004, Release ENV_VERSION

Typical D.C. Characteristics

Power Supply Current (mA) - Ipp

A.C. Characteristics

T4=0°Cto70°C
Vss - Dpp =15V £ 5%

Power Supply Current *

Vs. Temperature

tgpw =t 4pw =400nsec

T

t 02 =400nsec

T " Vpp = -15,75V
\\ -15.0v N~

-\‘Q}

~

T

I~

Ambient Temperature (°C)

Sym; Parameter Min | Limit | Max Unit| Test Conditions
bol Typi-
cal
tcy | Clock Period 1.35 2.0 usec
tyr | Clock Rise Times 50 ns
tyr | Clock Fall Times 50 ns
typur Clock Width 380 480 ns
tsp1| Clock Delay t4; to 42 400 550 ns
typ2| Clock Delay tgo to tgq 150 ns
tw | Data-In, CM, SYNC Write | 350 | 100 ns
Time
ty Data-In, CM, SYNC Hold | 40 20 ns
[1,3]| Time
ty | Data Bus Hold Time in M, - 40 20 ns
[3] | X7 and X5 - X3 transition
tos | Set Time (Reference) 0 ns
(2]
tacqg Data-Out Access Time Data ns Cour = 500pF Data Lines 200pF Data
Lines Data Lines SYNC CM- 930 700 Lines 500pF SYNC 160pF CM-ROM
ROM CM-RAM 930 930 50pF CM-RAM
930
tony | Data-Out Hold Time 50 150 ns Cour = 50pF

8.4. 4004 Hardware Characteristics

43

Pyntel4004, Release ENV_VERSION

Note: [1]¢{x measured with ¢4z = 10nsec

[2] T'acc is Data Bus, SYNC and CM-line output access time referred to the ¢ trailing edge which clocks these lines
out. tpg is the same output access time referred to the leading edge of the next ¢, clock pulse.

[3] All MCS-40 components which may transmit instruction or data to the 4004 at M5 and X5, always enter a float state
until the 4004 takes over the data bus at X; - X3 time. Therefore, the Ty requirement is always insured since each
component contributes 10 A of leakage current and 10pF of capacitance, which guarantees that the data bus cannot
change faster than 1V/usec

[4] Cparapus = 200pF if 4008 and 4009 or 4298 is used.

4004 Timing Diagram

X A A, A; M, M, X Xz X3

@ U U U U U U L U U

OPA (4004)
AC (4040) If IOR Port/RAM
CPU enabled CPU enabled CPU enabled ROM enabled ROM enabled CPU enabled Else CPU enabled] CPU enabled

12 U U Ul Ul Ul UE™ T U sl ™

I — —
CM-ROM} | | IF1/0 If SRC

1 I0R stands for I/0 Read. In this case, the CPU will receive data from RAM storage locations or 1/0 input lines of 4001.
2 The successor to the 4004, the intel 4040, has a superset of the 4004’s instruction set, and can also respond to interrupts.

4004 Timing Diagram Detail

tep, tep,
te
—_— | — t¢R
¢1 —K Z— 10%
—— 90%
m—— R
/ - 10%
¢2 / 90%
tw ty
Data Bus, CM ANY) < T } Ny v
rue
(Inputs) u "
tos— —
(Reference)
Data Bus, CM X True -\Z:-w
(Outputs) A i -
Tacc tos

44 Chapter 8. MCS-4 chipset hardware characteristics

Pyntel4004, Release ENV_VERSION

The multiple chips in the MCS-4 chipset have their own unique hardware characteristics:
* 4001
* 4002
* 4003
* 4004

8.4. 4004 Hardware Characteristics 45

Pyntel4004, Release ENV_VERSION

46

Chapter 8. MCS-4 chipset hardware characteristics

CHAPTER
NINE

OVERVIEW OF PYNTEL4004

Pyntel4004 consists of two components:
* an Intel 4004 assembler/disassembler

¢ an Intel 4004 emulator to run assembled code

Hardware emulation

The Intel 4004 emulator mimics the hardware of an original Intel 4004 processor and its’ support chips through software.

Each instruction in Pyntel4004 acts on a virtual processor in the same way as the original hardware implementations
of the instructions would act upon the real hardware.

The intention is to test the assembled code on a real Intel 4004 chip to verify this..

Usage

In order to use these tools, a source file must first be prepared in i4004 assembly language.

/ Example program

org ram
fim 2 254
end

This file should then be assembled into 4004 machine code.
In order to do this, the CLI package should be installed:
pip install pyntel4004-cli
The full instructions for Pyntel4004-CLI should be read, however, a basic summary is below: ### Basic Usage.
4004 <command> <options> <arguments>
<command> - asm Assemble the input file - dis Disassemble the input file - exe Execute the object file
<options> - -h, —help: Show help. - -v, —version: Show the version and exit.

asm options.
* -i, —input <input file>: assembly language source file.
* -0, —output <output file>: object code output file.

* -e, —exec: execute the assembled program if successful assembly.

47

Pyntel4004, Release ENV_VERSION

-t, —type <extension>: Type of output required. (multiple output types can be specified)
— bin will deliver a binary file of machine code
— obj will deliver an object module which can be loaded back into the disassembler for debugging

— h will deliver a c-style header file that can be used in a RetroShield Arduino to run the code on a real
4004

— ALL will deliver all of the above<details>New in 0.0.1-alpha.2<summary>Changelog</summary></details>

-C, —config <config file>: use the specified config file<details>New in 0.0.1-
alpha.2<summary>Changelog</summary></details>

-q, —quiet: Quiet mode on *
-m, —-monitor: Start monitor*

-h, -help: Show help.

*Mutually exclusive parameters

dis options.

-0, —object <object file>: object code or binary input file.

-1, -labels: show the label table (only available in .OBJ files)<details>New in 0.0.1-
alpha.2<summary>Changelog</summary></details>

-C, —config <config file>: use the specified config file<details>New in 0.0.1-
alpha.2<summary>Changelog</summary></details>

-b, —byte: number of bytes to disassemble (between 1 and 4096).
-h, -help: Show help.

It is the user’s responsibility to understand that if a byte count causes the disassembler to end up
midway through a 2-byte instruction, that last instruction will not be disassembled correctly.

exe options.

-0, —object <object file>: object code or binary input file.

-C, —config <config file>: use the specified config file<detailssSNew in 0.0.1-
alpha.2<summary>Changelog</summary></details>

-q, —quiet: Quiet mode on

-h, -help: Show help.

48

Chapter 9. Overview of Pyntel4004

Pyntel4004, Release ENV_VERSION

9.1 Error Messages

Error messages are displayed when there are issues with either the supplied command, or issues with the source code
itself. The errors are raised as exceptions, with an exception type together with an information message

9.2 Errors
Command | Exception | Options | Message |

[-==]—{----]-] | asm | BadParameter | |Invalid Parameter Combination: --quiet and --monitor cannot be used together
| | asm | BadOptionUsage | --type |Invalid output type specified | | asm | BadOptionUsage | --type |Cannot specify
'ALL' with any others| |dis| BadOptionUsage| —inst | Instructions should be between 1 and 4096 |

Special Error Message
Exception | Message |

| | CoreNotlnstalled| Pyntel4004 core is not installed - use pip install Pyntel4004

9.3 Configuration Files

<details>New in 0.0.1-alpha.2<summary>Changelog</summary></details>
 Pyntel4004-cli configuration files
are specified using the [TOML](http://toml.io/) notation. This is a notation which favours humans over machines, so
it is easy to understand and write the configuration you want.

 Example Configuration File - example2.toml

" # Configuration for Pyntel4004-cli.

title = “Configuration file for example2.asm”

[asm] input = “example2.asm” output = “example2” type = [“BIN”, “H”] exec = true monitor = true quiet = true
[dis] object = “examples/example2.obj” inst = 6 labels = true

[exe] object = “examples/example2.0bj” quiet = true ="
The configuration file has 4 sections:

This MUST be first

i) The title - simply a description of what the configuration file is for. Note that any comments (lines starting with
a “# can be added anywhere for readability).

(in no particular order)
ii) “[asm] " section containing directives for the assembly of a specific program source file
iii) ~[dis]" section containing directives for the disassembly of a specific object module
iv) " [exe] section containing directives for the execution of a specific object module

The valid configuration tokens are shown in the example above - they mirror the options that can be specified on the
command line.

ANY of the configuration tokens can be overriden simply by specifying them on the command line.

9.1. Error Messages 49

http://toml.io/

Pyntel4004, Release ENV_VERSION

50

Chapter 9. Overview of Pyntel4004

CHAPTER
TEN

MCS-4 ASSEMBLY LANGUAGE PROGRAMMING MANUAL

= ®
e INTEL CORP. 3065 Bowers Avenue, Santa Clara, California 95051 « (408) 246-7501

MCS=4 Assembly |
Language Programming
Manual |

PRELIMINARY EDITION

December 1973

© Intel Corporation 1973

10.1 Acknowledgements

The majority of the text within the expanded MSC-4 manual is © Intel <intel.com>_ 1971, 1973
Additional text is © 4004.com

Datasheets provided by chipdb.org

bitsavers.org provided: MCS-4 Assembly Language Manual MCS-4 Users Manual Intellec-4 manual
Chip images © cpu-zone.com

Second Source information provided by wikichip.org

51

http://4004.com
http://datasheets.chipdb.org/Intel/MCS-4/datashts/MCS4_Data_Sheet_Nov71.pdf
http://www.bitsavers.org/components/intel/MCS4/MCS-4_Assembly_Language_Programming_Manual_Dec73.pdf
http://www.bitsavers.org/components/intel/MCS4/MCS-4_UsersManual_Feb73.pdf
http://www.bitsavers.org/components/intel/MCS4/Intel_Intellec_4_and_Micro_Computer_Modules_Jan74.pdf
http://www.cpu-zone.com/4001.htm
wikichip.org

Pyntel

4004, Release ENV_VERSION

10.2

Glossary of Terms

Term| Definition
Ad- | A 12bitnumber assigned to a read-only-memory or program random-access memory location corresponding
dress| to its sequential position.
Bit | The smallest unit of information which can be represented. (A bit may be in one of two states, 0 or 1).
Byte | A group of 8 contiguous bits occupying a single memory location.
Char-| A group of 4 contiguous bits of data.
ac-
ter
In- | The smallest single operation that the computer can be directed to execute.
struc-
tion
Ob- | A program which can be loaded directly into the computer’s memory and which requires no alteration before
ject | execution. An object program was usually on paper tape, and is produced by assembling a source program,
Pro- | however the Pyntel4004 Assembler can produce object code to be loaded into an emulator or directly on to
gram| a board simulating an MCS-4. Instructions are represented by binary machine code in an object program.
Pro- | A sequence of instructions which are taken as a group to allow the computer to accomplish a desired task.
gram
Sourde A program which is readable by a programmer but which must be transformed into object program format
Pro- | before it can be loaded into the computer and executed. Instructions in an assembly language source program
gram| are represented by their assembly language mnemonic.
Sys- | A program written to help in the process of creating user programs.
tem
Pro-
gram
User | A program written by the user to make the computer perform any desired task.
Pro-
gram
nnnb | nnn represents a number in binary format.
Oxnn | nnn represents a number in hexadecimal format.

Note

All numbers in this document are assumed to be decimal unless otherwise specified.

Note

olo[1]1]|r]R|R]O

A representation of a byte in memory. Bits which are fixed are indicated by O or 1; bits vvhich may be either 0 or 1 in
different circumstances are represented by letters; thus RP represents a three-bit field which contains one of the eight
possible combinations of zeroes and ones.

52

Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

10.3 Introduction

This document has been written to help the reader program the INTEL 4004 microcomputer in assembly language, and
to show how it is economical and practical to do so.

Accordingly, this manual assumes that the reader has a good understanding of logic, but may be unfamiliar with pro-
gramming concepts.

For those readers who do understand programming concepts, several features of the INTEL 4004 microcomputer are
described below. They include:

* 4 bit parallel CPU on a single chip.
* 46 instructions, including conditional branching, subroutine capability, and binary and decimal arithmetic modes.

* Direct addressing for 32,768 bits of read-only memory, 5120 bits of data random-access memory and 32768 bits
of program random-access memory.

* Sixteen 4-bit index registers and a three 12-bit register stack.

INTEL 4004 microcomputer users will have widely differing programming needs. Some users may wish to write a few
short programs, while other users may have extensive programming requirements.

For the user with limited programming needs,two system programs resident on the INTELLEC 4 (Intel’s development
system for the MCS-4 microcomputer) are provided; they are an Assembler and a System Monitor.

Use of the INTELLEC 4 and its system programs is described in the INTELLEC 4 Operator’s Manual.

For the user with extensive programming needs, cross assemblers are available which allow programs to be generated
on a computer having a FORTRAN compiler whose word size is 32 bits or greater, limiting INTELLEC 4 use to final
checkout of programs only.

10.4 Computer Organization

This section provides the programmer with a functional overview of the 4004 computer. Information is presented in
this section at a level that provides a programmer with necessary background in order to write efficient programs.

To the programmer, the computer is represented as consisting of the following parts:

(1) Sixteen working registers which serve as temporary storage for data, and provide the means for addressing mem-
ory.

(2) The accumulator in which data is processed.

(3) Memories which may hold program instructions or data (or sometimes both), and which must be addressed
location by location in order to access stored information.

(4) The stack which is a device used to facilitate execution of subroutines, as described here

(5) Input/Output which is the interface between a program and the outside world.

10.3. Introduction 53

Pyntel4004, Release ENV_VERSION

10.5 Working (Index) Registers

The 4004 provides the programmer with sixteen 4-bit registers.

These may be referenced individually by the integers O through 15 , or as 8 register pairs by the even integers from 0
through 14.

The register pairs may also be referenced by the symbols OP through 7P.

These correspondences are shown as follows:

Individual Registers Register Pairs

Register 0 —

le—nRegister 1

Register 2 —

le—Register 3

Register 4 —

je—Register 5

Register 6 —]

le—Register 7

Register 8 —

[«—Register 9

Register Pair 0 or OP —

Register Pair 2 or 1P —

Register Pair 4 or 2P —

Register Pair 6 or 3P —

Register Pair 8 or 4P —

Register 10 — 10 | 11 j«—Register 11 Register Pair 10 or 5P —{ 10 | 11

Register 12 — 12 | 13 l«—Register 13 Register Pair 11 or 6P —| 12 | 13

Register 14 —»| 14 [15 lJe—Register 15 Register Pair 12 or 7P —| 14 | 15

Text © intel4004.com

10.6 Accumulator

The accumulator is a special 4-bit register in which data may be transformed by program instructions.

10.7 Memories

10.7.1 Program Random Access Memory (PRAM)

Program random access memory (RAM) is organized exactly like ROM. 4096 locations are always available, which
are used to hold program instructions or data.

Unlike ROM, however, program RAM locations can be altered by program instructions.

54 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

10.7.2 Data Random Access Memory (RAM)

As its name implies, data random access memory (DATA RAM) is used for the temporary storage of data by programs.

The RAM is laid out as shown below:

Data RAM bank organisation

DCL Instruction selects 1 of 8 Data RAM banks

Data RAM Chip 0 DataRAMChip0|] —=—= === == Data RA‘I\VA Chip 0
Data RAM Chip 1 Data RAMChipl |] = = = = = = == Data RAM Chip 1
Data RAM Chip 2 DataRAM Chip2|] = ===== == Data RAM Chip 2
Data RAM Chip 3 DataRAMChip3|] —=—=== === Data RAM Chip 3
DataRAMbank0 Data RAM bank 1 Data RAM bank 7

RAM chip organisation
4 Specially
Addressable 4-bit
Decimal Hexadecimal status characters per
Address Address 16 Directly Addressable 4-bit characters per Data RAM Register Data RAM Register
I L u A 1
0-15 00 -OF Data RAM Register 0
16-31 10-1F Data RAM Register 1
32-47 20-2F Data RAM Register 2
48 -63 30-3F Data RAM Register 3

In order to address a 4-bit character of DATA RAM, the programmer first uses a “OCL” instruction to choose one of a
maximum of eight DATA RAM BANKS.

An eight bit address is then sent via an “SRC” instruction which chooses one of four DATA RAM CHIPS within the
DATA RAM BANK, one of four 16-character DATA RAM REGISTERS within the DATA RAM CHIP, and one of 16
4-bit characters within the DATA RAM REGISTER.

Within any particular DATA RAM BANK, then, addresses O - 63 indicate which of the 64 directly addressable charac-
ters of DATA RAM CHIP 0 is to be addressed, addresses 64 - 127 correspond to the characters of CHIP 1, addresses
128 - 191 correspond to CHIP 2, and addresses 192 - 255 correspond to CHIP 3.

In addition, each DATA RAM REGISTER has four 4-bit STATUS characters associated with it. These status characters
may be read and written like the data characters, but are accessed by special instructions as described /ere and here

10.7. Memories 55

Pyntel4004, Release ENV_VERSION

10.7.3 Read-Only Memory (ROM)

Read-only memory (ROM) is used for storing program instructions and constant data which is never changed by the
program.

This is because the program can read locations in ROM, but can never alter (write) ROM locations.
ROM may be visualized as below; as a sequence of bytes, each of which may store 8 bits (two hexadecimal digits).

Up to 4096 bytes of ROM may be present, and an individual byte is addressed by its sequential number between 0 and
409s.

ROM is further divided into pages, each of which contains 256 bytes.
Thus: locations 0 through 255 comprise page 0 of ROM, locations 256 through 511 comprise page 1 and so on.

Decimal Hexadecimal
Address Address « 8 Bits >
0 0
| |
I I Page O
255 FF
256 100
| | Page 1
| |
511 1FF
| | | |
| | | |
I i I I
1 | |
3840 FOO
| |
I I Page 15
4095 FFF

Note: Instruction Positioning

As described here, certain instructions function differently when located in the last byte (or bytes) of a page than when
located elsewhere.

The 4004 can be used with three different types of memory which have different organizations and characteristics, and
are used for different purposes.

These are :
* ROM (Read Only Memory)
* PRAM (Program Random Access Memory)
* RAM (Data Random Access Memory)

56 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

10.8 The Stack

The stack consists of three 12-bit registers used to hold addresses of program instructions. Since programs are always
run in ROM or program RAM, the stack registers will always refer to ROM locations or program RAM locations.

Stack operations consist of writing an address to the stack, and reading an address from the stack. In order to understand
these operations, it may be helpful to visualize the stack as three registers on the surface of a cylinder, as shown below:

‘« Pointer
—

“a” represents an address

Each stack register is adjacent to the other two stack registers. The 4004 keeps a pointer to the next stack register
available.

10.8.1 Writing An Address To The Stack

To perform a stack write operation;
(1) The address is written into the register indicated by the pointer.
(2) The pointer is advanced to the next sequential register.

Any register may be used to hold the first address written to the stack. More than three addresses may be written to the
stack; however, this will cause a corresponding number of previously stored addresses to be overwritten and lost. This
is illustrated below:

After 2 writes After 3 writes After 4 writes
a a — d
b b b —
— c c

a, b, ¢, d represent any 4 memory addresses
<4——— represents the stack pointer

Note:

Storing the fourth address (d) overwrites the first address stored (a).

10.8. The Stack 57

Pyntel4004, Release ENV_VERSION

10.8.2 Reading An Address From The Stack

To perform a stack read operation;
(1) The pointer is backed up one register.
(2) The memory address indicated by the pointer is read.

The address read remains in the stack undisturbed. Thus, if 4 addresses are written to the stack and then three reads
are performed, the stack will appear as below:

First read: Second read: Third read:

Address d is read Address cis read Address b is read
d — d d
b b b —
c c -— c

b, ¢, d represent any 4 memory addresses
<= represents the stack pointer

The stack is used by programs as described /Zere.

10.9 Input and Output

Programs communicate with the outside world via 4-bit input or output ports. The operation of these ports is controlled
by special I/O instructions described here. These ports are physically located on the same devices which hold ROMs
and DATA RAMs; therefore, they are referred to as ROM ports or RAM ports. These are totally separate from the
instruction or data locations provided in ROM or RAM, and should not be confused with them. The ports associated
with RAMSs may be used only for output.

10.10 Computer Program representation in Memory

A computer program consists of a sequence of instructions. Each instruction performs an elementary operation such
as the movement of data, an arithmetic operation on data, or a change in instruction execution sequence. Instructions
are described in groups or individually.

A program will be stored in Read-Only Memory or Program Random Access Memory. It will appear as a sequence
of hexadecimal digits which represent the instructions of the program. The memory address of the instruction being
executed is recorded in a 12-bit register called the Program Counter, and thus it is possible to track a program as
it is being executed. After each instruction is executed, the program counter is advanced to the address of the next
instruction. Program execution proceeds sequentially unless a transfer-of-control instruction (jump or skip) is executed,
which causes the program counter to be set to a specified address. Execution then continues sequentially from this new
address in memory.

Upon examining the contents of a ROM or program RAM memory location, there is no way of telling whether a byte
contains an encoded instruction or constant data. For example, the hexadecimal code F2 has been selected to represent
the instruction IAC (increment accumulator). Thus, the hex value F2 stored in a memory byte could represent either
the instruction IAC or the hex data value F2.

58 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

It is up to the programmer to ensure that data is not misinterpreted as an instruction code, but this is simply done as
follows:

Every program has a starting memory address, which is the memory address of the location holding the first instruction
to be executed. Just before the first instruction is executed, the program counter will automatically be set to this address,
and this procedure will be repeated for every instruction in the program. 4004 instructions may require 8 or 16 bits for
their encoding; in each case the program counter is set to the corresponding address as shown in the diagram below.

In order to avoid errors, the programmer must be sure that a byte of constant data does not follow an instruction when
another instruction is expected. Referring to the diagram, an instruction is expected in location 0x13F, since instruction
4 is to be executed after instruction 3.

If location Ox13F held constant data, the program would not execute correctly. Therefore, when writing a program, do
not place constant data in between adjacent instructions that are to be executed consecutively.

A class of instructions (referred to as transfer-of-control instructions) causes program execution to branch to an in-
struction other than the next sequential instruction. The memory address specified by the transfer of control instruction
must be the address of another instruction; if it is the address of a memory location holding data, the program will
not execute correctly. For example, referring to the diagram below, suppose instruction 2 specifies a jump to location
0x140 and instructions 3 and 4 were replaced by data. Then following execution of instruction 2, the program counter
would be set to 0x140 and the program would execute correctly. But if, in error, instruction 2 were to specify a jump to
0x13E, an error would result since this location now holds data. Even if instructions 3 and 4 were not altered, a jump
to location 0x13E would cause an error, since this is not the first byte of the instruction.

Upon reading the instruction summary, you will see that it is easy to avoid writing an assembly language program with
jump instructions which have erroneous memory addresses. Information on this subject is given here rather to help the
programmer who is debugging programs by entering hexadecimal codes directly into program RAM

Note: Programs usually exist in ROM, and therefore cannot be altered in this manner.

Memory Address Instruction Program Counter Contents
(hexadecimal) Number (hexadecimal)
1 1
1]
0x139
Ox13A } 1 0x13A
0x13B
2 0x13B
0x13C
0x13D
3 0x13D
0x13E
Ox13F } 4 0x13F
0x140
5 0x140
0x141
0x142 I

10.10. Computer Program representation in Memory 59

Pyntel4004, Release ENV_VERSION

10.11 Memory Addressing

10.11.1 Direct Addressing

With direct addressing, as the name implies, an instruction provides an exact memory address. The following instruction
provides an example of direct addressing:

Jump to location 3A2

This instruction is represented by 4 hexadecimal digits in RQM or program RAM. The first digit is a 4, signifying a
jump instruction, while the final 3 digits specify the address.

This instruction would appear in memory as follows:

Arbitrary Memory Memory

Address
(hexadecimal) : :
any-1 Jump
any 43 Instruction
any+1 A2
1 1
1 1
1 1
Address
0x3A2 0x3A2
0x3A3 Specified
0x3A4
0x3A5
0x3A6 1 1

10.11.2 Same Page Addressing

Some instructions supply two hexadecimal digits which replace the lowest 8 bits of the program counter, addressing a
ROM or program RAM location on the same page as the instruction being executed.

Note: (Two addresses are on the same page if the highest order hexadecimal digit of their addresses are equal. See
Section 2.3.1)

The following instruction provides an example of same page addressing:

Jump on condition 2 to location OF of this page

60 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

This instruction would appear in memory as follows:

Memory Memory
Address

(hexadecimal) : 1
0x30E

0x30F
0x310

0x3A0 12 Code for Jump on Condition 2

0x3A1 OF Address within this page
0x3A6 1 1

The identical instruction encoding 0x120F, if located at location 0x501, would cause a jump to memory address 0x50F.

10.11.3 Indirect Addressing

With indirect addressing, an instruction specifies a register pair which in turn holds an 8 bit value used for same page
addressing (Section 2. 7.2). Suppose that registers 4 and 5 hold the 4-bit hexadecimal numbers 1 and B, respectively.
Then the instruction:

Jump indirect to contents of register pair 4

This instruction would appear in memory as follows:

Memory Memory Register Pair 4
Address

(hexadecimal) : I

OxX1FF B

0x200 35
0x201

0x21B
0x21C

0x21D 1 1

The 3 indicates a “jump indirect” instruction; the 5 indicates that the address indicated on this page is held in register
pair 4. If register pair 4 had held the hex numbers 3 and C, a jump to location 0x23C would have occurred.

10.11. Memory Addressing 61

Pyntel4004, Release ENV_VERSION

10.11.4 Immediate Addressing

An immediate instruction is one that provides its own data. The following is an example of immediate addressing

Load the accumulator with the hexadecimal number 3

This instruction would appear in memory as follows:

Memory

D3

The digit D signifies a “load accumulator immediate” instruction; the digit 3 is the number to be loaded.

10.11.5 Program RAM Addressing

When a program stores an 8 bit value into a program RAM location, a special sequence of instructions using the WPM
instruction.

10.11.6 Data RAM Addressing

To address a location in DATA RAM, the DCL and SRC instructions must be used as described /ere.

When the DCL has chosen a specific DATA RAM bank, the address of the specific character is held in a register pair
accessed by the SRC instruction.

10.11.7 Subroutines and use of the Stack for Addressing

Before understanding the purpose or effectiveness of the stack, it is necessary to understand the concept of a subroutine.
Consider a frequently used operation such as addition.

The 4004 provides instructions to add one character of data to another, but what if there was a requirement to add
numbers outside the range of 0 to 15 (the range of one character)? Such addition will require a number of instructions
to be executed in sequence. It is quite possible that this addition routine may be required many times within one
program; to repeat the identical code every time it is needed is possible, but very wasteful of memory:

62 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

Program

|

Addition

I Program

Addition

Program

-

Addition

etc....

A more efficient means of accessing the addition routine would be to store it once, and find a way of accessing it when
needed:

Program
Program I N\
\
Program /
*
1

etc....

Addition

A frequently accessed routine such as the addition above is called a subroutine, and the 4004 provides instructions that
call subroutines and return from subroutines.

When a subroutine is executed, the sequence of events may be depicted as follows:

Main Program

Call Instruction -\

Subroutine

Next Instruction /

The arrows indicate the execution sequence.

When the” Call” instruction is executed, the address of the “next” instruction is written to the stack (see Section 2.4), and
the subroutine is executed. The last executed instruction of a subroutine will always be a special “Return Instruction”,

10.11. Memory Addressing 63

Pyntel4004, Release ENV_VERSION

which reads an address from the stack into the program counter, and thus causes program execution to continue at the
“Next” instruction as illustrated below:

Memory
Address

(hexadecimal) :

0xCo1
0xC02
0xC03
0xCo4
0xC05
0xC06
0xCo7

OxXEFF
0xFOO0
0xFO1
0xF02
0xFO3
0xF04
0xF4D
OxF4E
OxF4F
0xF50

Memory Instruction

Call Subroutine at 0xF02

Next instruction

First Subroutine instruction

1 Body of Subroutine

Return

Comments

Write address of next
instruction 0xCO5 to
the stack

Return
to next
instruction

Read return address
(0xC05) from the stack

Since the stack provides three registers, subroutines may be nested up to three deep; for example, the addition subroutine
could itself call some other subroutine and so on. An examination of the sequence of write and read stack operations
will show that the return path will always be identical to the call path, even if the same subroutine is called at more
than one level; however, an attempt to nest subroutines to a depth of more than 3 will cause the program to fail, since
some addresses will have been overwritten.

Addressing specific memory bytes constitutes an important part of any computer program. There are a number of ways
in which this can be done, as described below

* Direct Addressing

* Same Page Addressing

e Indirect Addressing

* Immediate Addressing

* Program RAM Addressing
e Data RAM Addressing

» Subroutines and the use of the stack for Addressing

64

Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

10.12 Carry Bit

To make programming easier, a carry bit is provided by the 4004 to reflect the results of data operations. The de-
scriptions of individual instructions specify which instructions affect the carry bit and whether the execution of the
instruction is dependent in any way on the prior status of the carry bit.

The carry bit is “set” if 1 and “reset” if 0.

Certain data operations can cause an overflow out of the high-order 3-bit. For example, addition of two hexadecimal
digits can give rise to an answer that does not fit in one digit:

3210 Bit number
A 1010
+ 7 0111
1 0001
carry

An operation that results in a carry out of bit 3 will set the carry bit. An operation that could have resulted-in a carry
out of bit 3 but did not will reset the carry bit.

10.13 The 4004 Instruction Set

10.13.1 How Assembly Language is Used

Memory Address
(hexadecimal)

0x331

0x332 FO

0x333 43

0x334 56
]
1 1
1 1
1 1
1 1

0x354 20

0x355 FF

0x356 60

0x357 | 1

Upon examining the contents of read-only memory or program random-access memory, a program would appear as a
sequence of hexaaecimal digits which are interpreted by the machine as instruction codes, addresses, or constant data.
It is possible to write a program as a sequence of digits (just as they appear in memory), but that is slow and expensive.

10.12. Carry Bit 65

Pyntel4004, Release ENV_VERSION

For example, in the example to the right, several instructions reference memory to address another instructions.
The example program works as follows:

» Byte 0x332 specifies that the accumulator and carry bit are to be cleared.

* Bytes 0x333 and 0x334 specify that program execution is to continue at location 0x356.

* Byte 0x356 specifies that register 0 is to be incremented.

Now suppose that an error discovered in the program logic necessitates placing a new instruction after byte 0x332.
Program code would have to change as follows:

Memory Address
(hexadecimal)

1 11 1
i Oldcontent | y New content I

0x331
0x332 FO FO New Instructions
0x333 43 New Instruction Moved Instructions
0x334 56 43 Changed Instructions
1
i : 57
| ¥ |
1
. ! 1]
0x354 20 ! H
0x355 FF 20
0x356 60 FF
0x357 | 1 60

Many instructions have been moved and as a result some must be changed to reflect the new addresses of instructions.
The potential for making mistakes is very high and is aggravated by the complete unreadability of the program.

Writing programs in assembly language is the first and most significant step towards economical programming; it
provides a readable notation for instructions, and separates the programmer from a need to know or specify absolute
memory addresses.

Assembly language programs are written as a sequence of instructions which are converted to executable hexadecimal
code by a special program called an Assembler

Assembly Language Program | Assembler | Executable hexadecimal
written by a programmer - Program " machine code
SOURCE PROGRAM OBIJECT PROGRAM

As illustrated above, the assembly language program generated by a programmer is called a SOURCE PROGRAM.
The assembler converts the SOURCE PROGRAM into an equivalent OBJECT PROGRAM, which consists of a
sequence of hexadecimal codes that can be loaded into ROM or program RAM and executed.

For example:

66 Chapter 10. MCS-4 Assembly Language Programming Manual

https://en.wikipedia.org/wiki/Assembly_language#Assembler

Pyntel4004, Release ENV_VERSION

Source program Memory Address Object program
(hexadecimal) : :
0x331
NOW, CLB 0x332 FO
JUN NXT 0x333 43
0x334 56
1
1 1
1 1
1 1
1 1
FIM 0 255 0x354 20
NXT, INC 0 0x355 FF
0x356 60
0x357 | 1

If a new instruction must be added, only one change is required. Even the reader who is not yet familiar with assembly
language will see how simple the addition is:

Source program Memory Address Object program

(hexadecimal) : 1

0x331
NOW, CLB 0x332 FO
0x333 ??
JUN NXT
0x334 43
0x335 57
1 1
1 1
. 0x355 20
FIM 0 255 0x356 FF
s INC 0 0x357 60
0x358 | 1

New Instructions
Moved Instructions
Changed Instructions

The assembler takes care of the fact that a new instruction will shift the rest of the program in memory.

10.13.2 Statement Mnemonics

Assembly language instructions must adhere to a fixed set of rules as described here. An instruction has four separate
and distinct parts or FIELDS.

10.13. The 4004 Instruction Set 67

Pyntel4004, Release ENV_VERSION

Field Name | Description

1 LA- It is the instruction location’s label or name, and it is used to reference the instruction.
BEL
2 CODE | It defines the operation that is to be performed by the instruction.

OPERANDprovides any address or data information needed by the CODE field.

4 COM- | Itis present for the programmer’s convenience and is ignored by the assembler. The programmer
MENT | uses comment fields to describe the operation and thus make the program more readable.

[OV)

The assembler uses free fields; that is, any number of blanks may separate fields.

Some examples are shown below:

CMI CLB / Clear accumulator and carry
LAB, INC 3 / Increment register 3
JUN CMI / Jump to instruction labelled "CMI"
FCH, FIM OP 255 / Load OxFF (decimal 255) into register pair 0

10.13.3 Label Field

This is an optional field. If present, it must start with a letter of the alphabet. The remaining characters may be letters
or decimal digits. The label field must end with a comma, immediately following the last character of the label. Labels
may be any length, but should be unique in the first three characters; the assembler cannot always distinguish between
labels whose first three characters are identical. If no label is present, at least one blank must begin the line.

Some examples of legal label field values are:

cMo,
NUL,
EGO,

Some examples of illegal label field values are:

4GE, / Does not begin with a letter
AGE / Valid characters, but does not end with a comma
A/A, / Contains invalid characters

The following label has more than 3 characters:

STROB,

Whilst this is legal, care must be taken not to have more than one label with the first 3 characters identical.

For example, the following labels are indistinguishable from one another and will result in unpredictable behaviour:

LABEL,
LAB2,
LAB6
LABEL29,

Since labels serve as instruction addresses, they cannot be duplicated. For example, the sequence:

68 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

NOwW, JUN NXT
NXT, INC 2
NXT, CLB

is ambiguous; the assembler cannot detennine which NXT address is referenced by the JUN instruction.

10.13.4 Code Field

This field contains a code which identifies the machine operation (add, subtract, jump, etc.) to be performed: hence the
term operation code or op-code. The instructions described in Sections 3. 3 thru 3.11, are each identified by a mnemonic
label which must appear in the code field. For example, since the “jump unconditionally” instruction is identified by
the letters “JUN”, these letters must appear in the code field to identify the instruction as “jump unconditionally”.

There must be at least one space following the code field. Thus:

LAB, JUN AWY

is legal, but

LAB, JUNAWY

is illegal.

10.13.5 Operand Field

This field contains information used in conjunction with the code field to define precisely the operation to be performed
by the instruction. Depending upon the code field, the operand field may be absent or may consist of one item or two
items separated by blanks.

There are five types of information [(a) through (e) below] that may be requested as items of an operand field, and the
information may be specified in five ways [(1) through (5) below].

The five ways of specifying information are as follows:

(1) A Decimal number

Example:

ABC, LDM 14 / Load accumulator with decimal 14 (1100b).

10.13. The 4004 Instruction Set 69

Pyntel4004, Release ENV_VERSION

(2) The current program counter. This is specified by the character * and is equal to the address of
the first byte of the currrent instruction.

Example:

GO, LDM *+6 / If the instruction above is being assembled at
/ location 213, it will cause program control to
/ be transferred to address 219.

(3) Labels that have been assigned a decimal humber by the assembler (the equate instruction).

Example:

Suppose label VAL has been equated to the number 42, and ZER has been equated to the number 0. Then the following
instructions all load register pair zero with the hexadecimal value 2A (decimal 42):

Al, FIM © 42
A2, FIM ZER 42
A3, FIM ZER VAL

(4) Labels that appear in the label field of another instruction.

Example:
LP1, JUN LP2 / Jump to label LP2
LP2, CMA

(5) Arithmetic expressions involving data types (1) to (4) above connected by the operators + (addi-
tion) and - (subtraction). These operators treat their arguments as 12-bit quantities, and generate
12-bit quantities as their result. If a value is generated which exceeds the number of bits available
for it in an instruction, the value is truncated on the left.

For example, if VAL refers to hexadecimal address OXFFE, the instruction:

JUN VAL

is encoded as Ox4FFE; a 4-bit operation code and 12 bit value.

However, the instruction:

JUN VAL + 9

will be encoded as 0x4007, where the value 0x007 has been truncated on the left to 12 bits (three hex digits) giving a
value o 0x007.

Using some or all of the above data specifications, the following five types of information may be requested:

70 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

(a) A register to serve as the source or destination in a data operation. Methods 1, 3, or 5 may be
used to specify the register, but the specification must finally evaluate to one of the decimal numbers
0 to 15.

Example:

I1, INC 4

I2, INC R4

I3, INC 16 - 12

Assuming R4 has been equated to 4, then the above instructions will ALL increment register 4.

(b) A register pair to serve as the source or destination in a data operation. The specification must
evaluate to one of the even decimal numbers from 0 through 14 (corresponding to register pair
designators OP through 7P).

Example:

I1, SRC 1P
I2, INC 2
I3, INC RG2

Assuming label RG2 has been equated to 2, then the above instructions will ALL increment register pair 2 (i.e. registers
2 and 3).

(c) Immediate data, to be used directly as a data item.

Example:

AC1, DATA / Load the value of DATA into the accumulator

The value of DATA could be one of the following forms:

19
12 + 72 -3
VAL / Where VAL has been equated to a number

(d) A 12 bit address, or the label of another location in memory.

Example:
HR, JUN OVR / Jump to instruction at OVR.
JUN 513 / Jump to hex address 201 (decimal 513).

10.13. The 4004 Instruction Set 71

Pyntel4004, Release ENV_VERSION

(e) A condition code for use by the JCN (jump on condition) instruction. This must evaluate to a
number from 0 to 15.

Example:

JCN 4 LOC
JCN 2+2 LOC

The above instructions cause program control to be transferred to address LOC if condition 4 (accumulator zero) is
true.

10.13.6 Comment Field

The only rule governing this field is that it must begin with a slash (/). It is terminated by the end of the line. A comment
field may appear alone on a line:

LOC, CLB /This is a comment
/This is a comment line

For the reader who understands assembly language, refer to the summary of the 4004 instruction set.

For the reader who is not completely familiar with assembly language, refer to the individual instructions with examples
and machine code equivalents.

More detailled information is contained within the sections below:
* How Assembly Language is Used

o Statement Mnemonics

Label Field
e Code Field
* Operand Field

e Comment Field

10.14 Data Statements

Any 4 bit character in DATA RAM contains one of the 16 possible combinations of zeros and ones. Arithmetic in-
structions assume that the DATA RAM characters upon which they operate are in a special format called “two’s com-
plement”, and the operations performed on these bytes are called “two’s complement arithmetic” ®

72 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

Two’s Complement

When a character is interpreted as a signed two’s complement number, the low order 3 bits supply the magnitude of
the number, while the high order bit is interpreted as the sign of the number (0 for positive numbers, 1 for negative).

The range of positive numbers that can be represented in signed two’s complement notation is, therefore, from 0 to 7:

Decimal | Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

To change the sign of a number represented in two’s complement, the following rules are applied:
1. Invert each bit of the number (producing the so-called one’s complement).
2. Add one to the result, ignoring any carry out of the high order bit position.

Example 1:

Produce the two’s complement representation of -6 . Following the rules above:

+ 6 = 0110
Invert each bit = 1001
Add 1 = 1010

Therefore, the two’ s complement representation of -6 is the hexadecimal number ‘0x0A’. (Note that the sign bit is set,
indicating a negative number.)

Example 2:

To interpret the value 0x0OC as a signed two’s complement number:
» The high order bit is set, indicating that this is a negative number.
* To obtain its value, again invert each bit and add one.

This is equivalent to subtracting one f:um the number and inverting each bit.

C = 1100
Invert each bit = 0011
Add 1 = 0100

Thus, the value of 0x0C is - 4.

The range of negative numbers that can be represented in signed two’s complement notation is, therefore, from -1 to
-8:

10.14. Data Statements 73

Pyntel4004, Release ENV_VERSION

Decimal | Binary
-1 1111
2 1110
3 1101
-4 1100
-5 1011
-6 1010
-7 1001
-8 1000

To perform the subtraction 6 - 3, the following operations are performed:

- Take the two's complement of 3 = 1101
- Add the result to the minuend:
6 = 0110
+ (-3) = 1101
00 11=3

When a data character is interpreted as an unsigned two’s complement number, its value is considered positive and in
the range O to 15.

Decimal | Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Two’s complement arithmetic is still valid. When performing an addition operation, the carry bit is set when the result
is greater than 15. When performing subtraction, the carry bit is set when the result is positive. If the carry bit is reset,
the result is negative and present in its two’s complement form.

Example 1:

Subtract 3 from 10 using unsigned two’s complement arithmetic.

10 =
-3 =

(continues on next page)

74 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

(continued from previous page)

carry

Since the carry bit is **

Setv‘::‘:

, the result is correct and positive

Example 2:

Subtract 15 from 12 using unsigned two’s complement arithmetic.

12 = 11
-15 = 00

O 1101=-3
carry

Since the carry bit is **reset®*, the result is negative and in its two's compliment.

—form.

To summarise Two’s complement, below is a number line showing all the 4-bit representations from +7 to -8.

Decimal | Binary
7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
0 0000
-1 1111
-2 1110
-3 1101
-4 1100
-5 1011
-6 1010
-7 1001
-8 1000

Why two’s complement ?

Using two’s complement notation for negative numbers, any subtraction problem becomes a sequence of bit inversions

and additions. Therefore, fewer circuits are needed to perform subtraction.

10.14. Data Statements

75

Pyntel4004, Release ENV_VERSION

10.15 Constant Data

Eight-bit data values can be assembled into ROM or program RAM locations by writing a blank code field and an
operand field beginning with a positive number. If the operand is greater than 8 bits, it will be truncated on the left.

Example:

Assume that a label VAL has been equated to 14, and the label LOC appears on an instruction assembled at location
0x034B

Assembled Data

LDM 0 / Statement for context
C1, 0 + VAL 0x0E
cz2, 4095 OxFF
C3, 0 + LOC 0x4B

The following are invalid data statements

LDM 0 / Statement for context
C4, ABC / Does not begin with a number
C5, -18 / Number is not positive

10.16 Instruction Summary

10.16.1 Index Register Instructions

76 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

FIN
Name Fetch Indirect from ROM
Function 8 bits of immediate data are loaded into the register pair specified by RP.
Syntax FIN RPp
Assembled
Binary 0010RRRO
Decimal 48, then incrementing by 2 until 62 (1st word)
Hexadecimal 0x30, then incrementing by 2 until 0x3E (1st word)
((Pu) . (Ro) - (Ry)) == RP,
OR
. ((Pusr) - (Ro) . (Ry)) = RP,
Symbolic
Execution 1 word, 8-bit code but with an execution time of 21.6 i sec
Side-effects Not Applicable, unless RPO is the designated target register pair, in which case, RPO
will contain the data at the memory location referenced by RPO at the start of the
instruction
Implemented fin

Detailed Description

The contents of registers 0 and 1 are concatenated to form the lower 8 bits of a ROM or program RAM address. The
upper 4 bits of the address are assumed equal to the upper 4 bits of the address at which the FIN instruction is located
(that is, the address of the FIN instruction and the address referenced by registers O and 1 are on the same page). The
8 bits at the designated address are loaded into the register pair specified by RP. The 8 bits at the designated address
are unaffected; the contents of registers 0 and 1 are unaffected unless RP = O.

The carry bit is not affected.

The target register pair is defined as part of the opcode as detailed below.

ofo]1]2[r]RrR]R]O
—

000 for register pair 0 or OP
001 for register pair 2 or 1P
010 for register pair 4 or 2P
011 for register pair 6 or 3P
100 for register pair 8 or 4P
101 for register pair 10 or 5P
110 for register pair 12 or 6P
111 for register pair 14 or 7P

10.16. Instruction Summary 77

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L389

Pyntel4004, Release ENV_VERSION

Example program

/ Example program

org ram
fin p
end

(Assume that address 0x25B contains the data Ox6E (spread over 2 words)).

If register O contains 0x5 and register 1 contains 0xB, when the FIN instruction is executed, the 8 bits located at hex
address 0x25B will be loaded into register pair 7P. Thus register 14 will contain 0x6, and register 15 will contain OxE.

Notes

If a FIN instruction is located in the last location of a page, the upper 4 bits of the designated address will be assumed
equal to the upper 4 bits of the next page.

Thus if the instruction:

fin 7p

is located at decimal address 511 (Ox1FF) and registers 0 and 1 contain 3 and 0xC, the 8 bits at address 0x23C (not
0x13C) will be loaded into registers 14 and 15.

This is dangerous programming practice and should be avoided whenever possible.

INC
Name Increment Register
Function Increments a specified register by 1.
Syntax INC(R)
Assembled
Binary 0110RRRR
Decimal 96, then incrementing by 1 until 111
Hexadecimal 0x60, then incrementing by 1 until 0x6F
(RRRR) + 1 == RRRR
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 u sec
Side-effects Not Applicable
Implemented inc

78 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Detailed Description

The address contained within the specified register pair designates either a particular DATA RAM data character, a
DATA RAM status character, a RAM output port, or a ROM input/output port. However, the address designates all of
these simultaneously; it is up to the programmer to then write the correct /O or RAM instruction to access the proper
entity.

The disassembly of the instruction below shows how the register pair are represented in the opcode.

olo]1]o|r|rR[R]0
—

N

000 for register pair 0 or OP
001 for register pair 2 or 1P
010 for register pair 4 or 2P
011 for register pair 6 or 3P
100 for register pair 8 or 4P
101 for register pair 10 or 5P
110 for register pair 12 or 6P
111 for register pair 14 or 7P

The register specified in the lower 4 bits of the instruction is incremented by 1. The carry bit will remain unchanged.
If the register specified contains a value of Ob1111 and an INC instruction is applied, the register will contain a value
of 0b0000, but the carry bit will remain unchanged

Example program

/ Example program

/ Loads the Accumulator with a value of 2
/ places that value in Register 6

/ increments Register 6

/ Register 6 contains a value of 3

org ram
1d 2
xch 6
inc 6
end

The index register instructions involve index registers or register pairs.

These instructions occupy one byte as follows:

10.16. Instruction Summary 79

Pyntel4004, Release ENV_VERSION

FIN INC

0000 for Register 0
0001 for Register 1
0010 for Register 2

0011 for Register 3

0o|0j1]1 Rp R,, R,:J 0 0100 for Register 4

\ ; 0101 for Register 5

g 0110 for Register 6

0111 for Register 7

000 for register pair 0 or OP 1000 for Register 8

001 for register pair 2 or 1P 1001 for Register 9
010 for register pair 4 or 2P 1010 for Register 10
011 for register pair 6 or 3P 1011 for Register 11
100 for register pair 8 or 4P 1100 for Register 12
101 for register pair 10 or 5P 1101 for Register 13
110 for register pair 12 or 6P 1110 for Register 14
111 for register pair 14 or 7P 1111 for Register 15

Code | Description
FIN Load RP with 8 bits of ROM data addressed by register pair 0.
INC Increment register REG.

10.16.2 Index Register To Accumulator Instructions

ADD
Name Add register to accumulator with carry
Function Add a value from a specified register to the accumulator, respecting the carry flag.
Syntax ADD R
Assembled
Binary 1000 R
Decimal 128, then incrementing by 1 until 143
Hexadecimal 0x80, then incrementing by 1 until Ox8F
(RRRR) + (ACC) + (CY) == ACC, CY
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.8 y sec
Side-effects Depending on the result, the carry bit is reset or set.
Implemented add

80 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Detailed Description

The 4 bit content of the designated index register is added to the content of the accumulator with carry. The result is
stored in the accumulator. The carry/link is set to 1 if a sum greater than 15 was generated to indicate a carry out;
otherwise, the carry/link is set to 0. The 4 bit content of the index register is unaffected.

Example programs

O|R|R|R|R

[

0000 for Register 0
0001 for Register 1
0010 for Register 2
0011 for Register 3
0100 for Register 4
0101 for Register 5
0110 for Register 6
0111 for Register 7
1000 for Register 8
1001 for Register 9
1010 for Register 10
1011 for Register 11
1100 for Register 12
1101 for Register 13
1110 for Register 14
1111 for Register 15

/ Example program 1

org
1dm
xch
1dm
clc
add
end

ram
9

12
6

12

In this example, the accumulator contains a value of 6, register 12 contains a value of 9, and the carry bit is 0.

Performing an ADD 12 (add the value of the accumulator to that in register 12) does the following:

Accumulator
Register 12
Carry

Result

The accumulator contains 15 and the carry bit is reset.

10.16. Instruction Summary

81

Pyntel4004, Release ENV_VERSION

/ Example program 2

org ram
1dm 9
xch 12
1dm 6
stc

add 12
end

In this example, the accumulator contains a value of 6, register 12 contains a value of 9, and the carry bit is 1 - note the
STC instruction replacing the CLC instruction.

Performing an ADD 12 (add the value of the accumulator to that in register 12) does the following:

Accumulator = 0 110

Register 12 = 1001

Carry = 1

Result 1 0000
Carry

The accumulator contains 0 and the carry bit is set.

SuB
Name Subtract index register from accumulator with borrow
Function Subtract a value in an index register from the accumulator, respecting the carry flag.
Syntax SUBR
Assembled
Binary 1001 R
Decimal 144, then incrementing by 1 until 159
Hexadecimal 0x90, then incrementing by 1 until 0x9F
(ACC) + (RRRR) + (CY) == ACC, CY
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.8 u sec
Side-effects Depending on the result, the carry bit is reset or set.
Implemented sub

Detailed Description

The contents of index register R are subtracted with borrow from the accumulator. The result is kept in the accumulator;
the contents of R are unchanged. A borrow from the previous subtraction is indicated by the carry bit being equal to
one at the beginning of this instruction. If the carry bit equals zero at the beginning of this instruction it is assumed
that no borrow occurred from the previous subtraction.

This instruction sets the carry bit if there is no borrow out of the high order bit position, and resets the carry bit if there
is a borrow.

82 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

The subtract with borrow operation is actually performed by complementing each bit of the contents of R and adding
the resulting value plus the complement of the carry bit to the accumulator.

Notes

This instruction may be used to subtract numbers greater than 4 bits in length. The carry bit must be complemented by
the program between each required subtraction operation. For an example of this, see “Decimal Subtraction”:.

The disassembly of the instruction below shows how the register is represented in the opcode:

1|0|0|1|R|R|R|R

[
0000 for Register 0
0001 for Register 1
0010 for Register 2
0011 for Register 3
0100 for Register 4
0101 for Register 5
0110 for Register 6
0111 for Register 7
1000 for Register 8
1001 for Register 9
1010 for Register 10
1011 for Register 11
1100 for Register 12
1101 for Register 13
1110 for Register 14
1111 for Register 15

Example programs

In order to perform a normal subtraction, the carry bit should be zero. If the accumulator contains 6, register 10 contains
2, and the carry bit is zero.

This is the set-up for the operation 6 - 2, giving the answer 4 in the accumulator.

/ Example program 1

org ram
1dm 2
xch 10
1dm 6
clc

sub 10
end

The sub operation above is carried out as follows:

Accumulator = 0 110
~ Register 10 = 1101 (register 10 = 0 0 1 0)
~ Carry = 1 (carry = 0)

(continues on next page)

10.16. Instruction Summary 83

Pyntel4004, Release ENV_VERSION

(continued from previous page)

Result 1 100
Carry indicates no borrow

The accumulator contains 4 and the carry bit is reset.

In this second example, if the accumulator contains 6, register 10 contains 2, and the carry bit is one:

/ Example program 2

org ram
1dm 2
xch 10
1dm 6
stc

sub 10
end

The sub operation above is carried out as follows:

Accumulator = 0110
~ Register 10 = 1101 (register 10 = 0 0 1 0)
~ Carry = 0 (carry = 1)

Result 1 0011

Carry indicates no borrow

The accumulator contains 3 and the carry bit is reset.

LD

Name Load index register to Accumulator

Function The 4 bit content of the designated index register (RRRR) is loaded into accumulator.
The previous contents of the accumulator are lost. The 4 bit content of the index
register and the carry/link bit are unaffected..

Syntax LDR)

Assembled

Binary 1010 RRRR

Decimal 160, then incrementing by 1 until 175 (1st word).

Hexadecimal 0xADO, then incrementing by 1 until OxAF (1st word).

(RRRR) == ACC

Symbolic

Execution 1 word, 8-bit code and an execution time of 10.3 y sec

Side-effects Not Applicable

Implemented 1d

84 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Detailed Description

The contents of REG are stored into the accumulator, replacing the previous contents of the accumulator. The contents

of REG are unchanged.

The carry bit and the accumulator are not affected.

RIR|R|R

Example program

—

0000 for Register 0
0001 for Register 1
0010 for Register 2
0011 for Register 3
0100 for Register 4
0101 for Register 5
0110 for Register 6
0111 for Register 7
1000 for Register 8
1001 for Register 9
1010 for Register 10
1011 for Register 11
1100 for Register 12
1101 for Register 13
1110 for Register 14
1111 for Register 15

LD

The example program will load the contents of register 11 into the accumulator.

If register 11 contains the value 9 (1001b), then after this program is executed, the accumulator will contain 9 also.

/ Example program
LD 11
END

10.16. Instruction Summary

85

Pyntel4004, Release ENV_VERSION

XCH
Name Exchange index register and accumulator
Function The contents of the register specified by REG are exchanged with the contents of the
accumulator. The carry bit is not affected.
Syntax XCH(R)
Assembled
Binary 1011 RRRR
Decimal 176, then incrementing by 1 until 191 (1st word).
Hexadecimal 0xBO0, then incrementing by 1 until OxBF (1st word).
(ACC) == ACBR
(RRRR) == ACC
(ACBR) == RRRR
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 y sec
Side-effects Not Applicable
Implemented xch

Detailed Description

The contents of the register specified by REG are exchanged with the contents of the accumulator. The carry bit is not
affected.

0000 for Register 0
0001 for Register 1
0010 for Register 2
0011 for Register 3
0100 for Register 4
0101 for Register 5
0110 for Register 6
0111 for Register 7
1000 for Register 8
1001 for Register 9
1010 for Register 10
1011 for Register 11
1100 for Register 12
1101 for Register 13
1110 for Register 14
1111 for Register 15

86 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Example program

If the accumulator contains 1100 and register O contains 0011 then the instruction XCH 0 will cause the accumulator
to contain 0011 and register O to contain 1100.

/ Example program
XCH ©
END

Note

ACBR is the Accumulator Buffer Register (4-bit)

This section describes instructions which involve an operation between an index register and the accumulator.

Instructions in this class occupy one byte as follows:

00 for ADD 0000 for Register
01 for SUB 0001 for Register

10 for LD

11 for XCH 0011 for Register

1000 for Register 8
1001 for Register 9
1010 for Register 10
1011 for Register 11
1100 for Register 12
1101 for Register 13
1110 for Register 14
1111 for Register 15

0010 for Register

0100 for Register
0101 for Register
0110 for Register
0111 for Register

NoupbhwWwNREO

Code | Description

ADD | Add REG plus carry bit to the accumulator.
SUB Subtract REG from accumulator with borrow.
LD Load accumulator from REG.

XCH | Exchange the contents of accumulator and REG.

10.16. Instruction Summary

87

Pyntel4004, Release ENV_VERSION

10.16.3 Accumulator Instructions

CLB
Name Clear Both
Function Clear both the accumulator and carry bit
Syntax CLB
Assembled
Binary 11110000
Decimal 240
Hexadecimal 0xFO
0 == ACC
0 == CY
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 y sec
Side-effects Carry bit and Accumulator are zeroed
Implemented clb

Detailed Description

The accumulator is set to 0 and the carry bit is reset.

The opcode for this instruction does not contain any additional data:

1]1]1|1]0]0]0|0

CLC
Name Clear Carry
Function Clear the carry bit
Syntax CLC
Assembled
Binary 11110001
Decimal 241
Hexadecimal 0xF1
0 == CY
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 p sec
Side-effects Carry bit is reset
Implemented cle
88 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208
https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Detailed Description

The carry bit is reset.

The opcode for this instruction does not contain any additional data:

1111

1

0

0

0

IAC
Name Increment accumulator
Function The content of the accumulator is incremented by 1.
Syntax IAC
Assembled
Binary 11110010
Decimal 242
Hexadecimal 0xF2
(ACC) +1 == ACC
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.8 sec
Side-effects No overflow sets the carry/link to 0; Overflow sets the carry/link to a 1.
Implemented iac

Detailed Description

The contents of the accumulator are incremented by one. The carry bit is set if there is a carry out of the high order bit
position, and reset if there is no carry.

The opcode for this instruction does not contain any additional data:

Examples

Example 1

If the accumulator contains 9, then the IAC operation will be as follows:

111]1

1

0

0

1

Accumulator = 1001
+
Result 0 1010
Carry
Example 2

If the accumulator contains 15, then the IAC operation will be as follows:

10.16. Instruction Summary

89

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Accumulator = 1111
+
Result 1 0000
Carry
CMC
Name Complement Carry
Function The carry/link content is complemented.
Syntax CMC
Assembled
Binary 11110011
Decimal 243
Hexadecimal 0xF3
(CY)m CY
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 p sec
Side-effects Carry bit is complemented
Implemented cme

Detailed Description

The contents of the carry is complemented, i.e. if the carry bit is 1, it is set to zero. If it is zero, it is set to 1.

The opcode for this instruction does not contain any additional data:

111|1|1|0|0|1]1

CMA
Name Complement Accumulator
Function Perform one’s complement on the accumulator
Syntax CMA
Assembled
Binary 11110100
Decimal 244
Hexadecimal 0xF4
a3 @ a1 a e ACC
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 u sec
Side-effects N/A
Implemented cma
90 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208
https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Detailed Description

The contents of the carry is complemented, i.e. if the carry bit is 1, it is set to zero. If it is zero, it is set to 1.

The opcode for this instruction does not contain any additional data:

1|1|1|1]0|1|0]|0

RAL
Name Rotate Accumulator left through Carry
Function The content of the accumulator and carry/link are rotated left.
Syntax RAL
Assembled
Binary 11110101
Decimal 245
Hexadecimal 0xF5
(CY) == a

aj = A

a; == CY
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 y sec
Side-effects As described
Implemented ral

Detailed Description

The contents of the accumulator are rotated one bit position to the left.

The high-order bit of the accumulator replaces the carry bit, while the carry bit replaces the low-order bit of the
accumulator as shown in the example below:

Carry Accumulator

Before RAL 0 1111011

RAL operation |—E< 1111011 "|

After RAL T 1|0]11|0

The opcode for this instruction does not contain any additional data:

1]11111j0]1]0|1

10.16. Instruction Summary 91

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

RAR

Name Rotate Accumulator right through Carry
Function The content of the accumulator and carry/link are rotated right.
Syntax RAR
Assembled
Binary 11110110
Decimal 246
Hexadecimal 0xF6

ap == CY

ap == aig

CY ww as
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 y sec
Side-effects As described
Implemented rar

Detailed Description

The contents of the accumulator are rotated one bit position to the right.

The low-order bit of the accumulator replaces the carry bit, while the carry bit replaces the high-order bit of the
accumulator.

Accumulator Carry

Before RAR Ool111110

RAR operation r 0 111 0

were [LJO[2J1] [0]

The opcode for this instruction does not contain any additional data:

1|1|1|1|0J1|1|O

92 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

TCC
Name Transmit Carry and Clear
Function The accumulator is cleared. The least significant position of the accumulator is set to
the value of the carry/link. The carry/link is set to 0.

Syntax TCC
Assembled
Binary 11110111
Decimal 247
Hexadecimal 0xF7

0 == ACC

Least significant bit of the accumulator
(CY) == a0

0 == CY
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 y sec
Side-effects Carry bit is reset
Implemented tee

Detailed Description

If the carry bit is zero, the accumulator is set to 0000. If the carry bit is one, the accumulator is set to 0001.

In either case, the carry bit is then reset.

The opcode for this instruction does not contain any additional data:

111]|1|1|0|1]1]1

DAC
Name Decrement accumulator
Function The content of the accumulator is decremented by 1.
Syntax DAC
Assembled
Binary 11111000
Decimal 248
Hexadecimal 0xF8
(ACC)-1 == ACC
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.8 u sec
Side-effects No borrow sets the carry/link to 1; Borrow sets the carry/link to a 0.
Implemented iac

10.16. Instruction Summary 93

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208
https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Detailed Description

The contents of the accumulator are decremented by one. The carry bit is set if there is no borrow out of the high-order
bit position, and reset if there is a borrow.

Note

Subtracting a number is carried out using the complement of the number and adding. Therefore subtracting 1 becomes
adding -1.

The opcode for this instruction does not contain any additional data:

1|1|1]1|0|0|1|O

Examples

Example 1

If the accumulator contains 9, then the DAC operation will be as follows:

Accumulator = 1001
+ (-1 1111
Result 1 1000

Carry (indicating no borrow)

Example 2

If the accumulator contains 0, then the DAC operation will be as follows:

Accumulator = 0000
+ (-D 1111
Result 0 1111

Carry (indicating a borrow)

TCS

94 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

Name Transmit Carry and Subtract
Function The accumulator is set to 9 if the carry/link is 0. The accumulator is set to 10 if the
carry/link is a 1. The carry/link is set to 0.

Syntax TCS
Assembled
Binary 11111001
Decimal 249
Hexadecimal 0xF9

1011 == ACC If(CY)=0

1010 == ACC If(CY)=1

0 == CY

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 p sec
Side-effects Carry bit is reset
Implemented tcs

Detailed Description

If the carry bit = 0, the accumulator is set to 9. If the carry bit = 1, the accumulator is set to 10.

In either case, the carry bit is then reset.

The opcode for this instruction does not contain any additional data:

111|1|1]|1|0|0]1

This instruction is used when subtracting decimal numbers greater than 4 bits in length. For an example of this, see

here

STC
Name Set Carry
Function Set the carry bit
Syntax STC
Assembled
Binary 11111010
Decimal 250
Hexadecimal OxFA

1 == CY

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 u sec
Side-effects Carry bit is set
Implemented stc

10.16. Instruction Summary 95

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208
https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Detailed Description

The carry bit is set.

The opcode for this instruction does not contain any additional data:

1]11|11|1|0]1|O

DAA
Name Decimal Adjust Accumulator
Function If the contents of the accumulator are greater than 9, or if the carry bit = 1, the accu-
mulator is incremented by 6. Otherwise, the accumulator is not affected.
Syntax DAA
Assembled
Binary 11111011
Decimal 251
Hexadecimal 0xFB
(ACC) + (0000 or 0110) == ACC
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 y sec
Side-effects As Described
Implemented daa

Detailed Description

If the contents of the accumulator are greater than 9, or if the carry bit = 1, the accumulator is incremented by 6.

Otherwise, the accumulator is not affected.

If the result of incrementing the accumulator produces a carry out of the high order bit position, the cary bit is set.

Otherwise the carry bit is unaffected (in particular it is not reset).

Notes

This instruction is used when adding decimal numbers. For an example of this see Decimal Addition:

The opcode for this instruction does not contain any additional data:

111|1|1]|1|0|1 |1

96

Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

KBP
Name Keyboard Process
Function If the accumulator contains OOOOB, it remains unchanged. If one bit of the accumu-
lator is set, the accumulator is set to a number from 1 to 4 indicating which bit was
set.
Syntax KBP
Assembled
Binary 11111100
Decimal 252
Hexadecimal 0xFC
(ACC) == KBP
ROM == ACC
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 x sec
Side-effects Not Applicable
Implemented kbp

Detailed Description

A code conversion is performed on the accumulator content, from 1 out of n to binary code. If the accumulator content
has more than one bit on, the accumulator will be set to 15 (to indicate error). The carry/link is unaffected.

The conversion table is shown below:

Accumulator before KBP Accumulator after KBP
0000 0000
0001 0001
0010 0010
0100 0011
1000 0100
0011 1111
0101 1111
0110 1111
0111 1111
1001 1111
1010 1111
1011 1111
1100 1111
1101 1111
1110 1111
1111 1111

The opcode for this instruction does not contain any additional data:

1]11111|1|1|0|0

Accumulator instructions operate only on the contents of the accumulator and/or the carry bit. Instructions in this class

occupy one byte as follows:

10.16. Instruction Summary 97

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

111|111 X [X|X]X
—_—
0000 for CLB § 0111 for TCC
0001 for CLC 1000 for DAC
0010 for IAC 1001 for TCS
0011 for CMC | 1010 for STC
0100 for CMA | 1011 for DAA
0101 for RAL | 1100 for KBP
0110 for RAR
Code | Description
CLB Clear both the accumulator and carry.
CLC | Clear carry.
IAC Increment accumulator.
CMC | Complement carry.
CMA | Complement each bit of the accumulator.
RAL Rotate accumulator left through carry.
RAR Rotate accumulator right through carry.
TCC | Transmit the value of the carry to the accumulator then clear carry.
DAC | Decrement accumulator.
TCS Adjust accumulator for decimal subtract.
STC Set carry.
DAA Adjust accumulator for decimal add.
KBP Convert accumulator from 1 of n code to a binary value.

10.16.4 Immediate Instructions

FIM

Name Fetch Immediate

Function 8 bits of immediate data are loaded into the register pair specified by RP.

Syntax FIM RPp Data

Assembled

Binary 0010RRRO DDDDDDDD

Decimal 32, then incrementing by 2 until 46 (1st word)

Hexadecimal 0x20, then incrementing by 2 until 0x2E (1st word)
D,D,D;D R,R, R, R,
D:sD¢D,Dgw# Rpi1 Rpst Rpsq Royg

Symbolic 5Us70g p+1 Np+1 Rp+1 Tp

Execution 2 words, 8-bit code and an execution time of 21.6 yu sec

Side-effects Not Applicable

Implemented fim

98 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L389

Pyntel4004, Release ENV_VERSION

Detailed Description

The 8 bits of immediate data (word 2) are loaded into the named register pair. The register pairs are defined within the
opcode as shown below:

RJR]0|[p|oo:[p.p:sJoe|D o

\ J \\ J
Y Y

=

000 for register pair 0 or OP 8-bit data quantity
001 for register pair 2 or 1P

010 for register pair 4 or 2P

011 for register pair 6 or 3P

100 for register pair 8 or 4P

101 for register pair 10 or 5P

110 for register pair 12 or 6P

111 for register pair 14 or 7P

Example program

/ Example program

org ram
fim 2 254
end

This will load the 8-bit decimal value 254 into the register pair 2 & 3.

After execution, register 2 will contain the upper 4 bits of the value 254, with register 3 containing the lower 4 bits i.e.
15 and 14 respectively.

This is because decimal 254 is represented as OXFE, so register 2 will contain OxF (decimal 15), while register 3 will
contain OxE (decimal 14).

10.16. Instruction Summary 99

Pyntel4004, Release ENV_VERSION

LDM

Name Branch Back and Load

Function The 4 bits of immediate data encoded in the instruction are loaded into the accumuator,
then execution continues with the most recent address on the stack. contents of the
accumulator. The carry bit is not affected.

Syntax LDM(D)

Assembled

Binary 1100 DDDD

Decimal 208, then incrementing by 1 until 223 (1st word).

Hexadecimal 0xDO, then incrementing by 1 until 0xDF (1st word).

DDDD == ACC

Symbolic

Execution 1 word, 8-bit code and an execution time of 10.3 x sec

Side-effects Not Applicable

Implemented ldm

Detailed Description

The 4 bits of immediate data are loaded into the accumulator.

The carry bit is not affected.

4-bit data item

Example Program

/ Example program

ldm ©

ldm 9

ldm 15
end

The above program will first clear the accumulator (setting all 4 bits to 0), then load the value 9 into the accumulator,
then finally, set all the accumulator’s 4 bits by loading the value 15.

There are two instructions which use data that is part of the instruction itself.

Code | Description
FIM Load 8 bit immediate DATA into register pair RP.
LDM | Load 4-bit immediate DATA into the accumulator.

100 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

10.16.5 Transfer Of Control Instructions

JUN
Name Jump Unconditionally
Function Jump to any address within the memory space.
Syntax JUN (address)
Assembled
Binary 0010RAAAA AAAAAAAA
Decimal 64, then incrementing by 1 until 79 (1st word)
Hexadecimal 0x40, then incrementing by 2 until Ox4F (1st word)
A3 A3 A3 A3 — PH
A A A A, w Py,
A1 A1 Al A1 —_— P|_
Symbolic
Execution 2 words 16-bit code and an execution time of 21.6 w sec
Side-effects Not Applicable
Implemented jun

Detailed Description

The 8 bits held in the register pair specified by RP are loaded into the lower 8 bits of the program counter. The highest
4 bits of the program counter are unchanged. Therefore program execution continues at this address on the same page
of memory in which the JIN instruction is loaded.

The carry bit, nor the contents of the register pair are not affected.

The disassembly of the instruction below shows how the register pair is represented in the opcode.

o[1]o]o[alalalal(alalalalafalala,

Y

12-bit address

This instruction and the JMS instruction , use a 12-bit address, and can reference any memory location. Their operation
is not influenced by their position within a page of memory, whereas some other instructions are.

Therefore, only a JUN or JMS instruction should be used to transfer control from one page of memory to another.

10.16. Instruction Summary 101

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Example program snippet for illustration

Arbitrary Memory

Address (Hex)
0x360 jun LRG
0x362 AD, add 1
0x370 LAC, 1dm 3
0x371 jun AD
0x3EO LRG, fim Op, 4
0x3E2 jun LAC

end

Normally, program instructions are executed sequentially.

A 12-bit register called the program counter holds the address of the instruction to be executed. The JUN instruction
replaces the program counter contents, causing program execution to continue at that address.

Thus the execution sequence of the above example is as follows:

The jun instruction at 0x360 replaces the contents of the program counter with 0x3EO. The next instruction executed
is the fim at location LRG which loads register O with the value 0, and register 1 with the value 4.

The jun at Ox3E2 is then executed. The program counter is set to 0x370, and the ldm at this address loads the accu-

mulator with the value 3.

The jun at 0x371 sets the program counter to 0x362, where the add instruction adds the contents of register 1 plus the

carry bit to the accumulator.

From here, normal program execution continues at location 0x363.

JIN
Name Jump Indirect
Function Jump to an address within this page of ROM.
Syntax JIN(Rp)
Assembled
Binary 0011RPpl1
Decimal 49, then incrementing by 2 until 63 (1st word)
Hexadecimal 0x31, then incrementing by 2 until 0x3F (1st word)
l PH — PHl unchanged
Rp R Ry Rp W= Py
Rp+1Rp+1 Ros1 Rpss we P
Symbolic pri Tt Tt et :
Execution 1 words 8-bit code and an execution time of 10.3 . sec
Side-effects Not Applicable
Implemented jin
102 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Detailed Description

Program execution is transferred to the instruction at location ADDR, which may be anywhere in memory. (If the JUN
is located in ROM, ADDR is a ROM address; if located in program RAM, ADDR is a program RAM address).

The carry bit is not affected.

olo|1[1[r]R]R]2
—

000 for register pair 0 or OP
001 for register pair 2 or 1P
010 for register pair 4 or 2P
011 for register pair 6 or 3P
100 for register pair 8 or 4P
101 for register pair 10 or 5P
110 for register pair 12 or 6P
111 for register pair 14 or 7P

Example program

/ Example program

org 0x3e4d
fim Op 21
jin Op
end

The FIM instruction loads register 0 with the value 1 and register 1 with the value 5. The JIN instruction then causes
a jump to location 0x315.

Note:

If the JIN instruction is located in the last location of a page in memory, the highest 4 bits of the program counter
are incremented by one, causing control to be transferred to the corresponding location on the next page. If the above
example, the JIN had been located at address 255 decimal (OxOFF) then control would have been transferred to address
0x115, not 0x015.

This is dangerous programming practice, and should be avoided whenever possible.

JCN

10.16. Instruction Summary 103

Pyntel4004, Release ENV_VERSION

Name Jump Conditional
Function Jump if satisfying a set of conditions
Syntax JCN
Assembled
Binary 0001 CCCC AAAAAAAA
Decimal 16 - 31 (1st word)
Hexadecimal 0x10 - 0x21 (1st word)
If C,C,C5C, is true:
AAAA, m=PM
AAAA, wPL
PH unchanged
if C,C,C;C, is false:
(PH) PH
(PM) s PM
(PL + 2) s PL
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.8 x sec
Side-effects Not Applicable
Implemented jen

Detailed Description

If the condition specified by Cy is false, no action occurs and program execution continues with the next sequential
instruction. If the condition specified by Cy is true, the 8 bits specified by AAAA replace the lower 8 bits of the
program counter. The highest 4 bits of the program counter are unchanged. Therefore, program execution continues at
the specified address on the same page of memory in which the JCN instruction is located. The carry bit is not affected.

The condition code is specified in the assembly language statement as a decimal value from O to 15, which is represented
in the assembled instruction as the corresponding 4 bit hexadecimal digit. meaning, as follows:

i 3| 2] If the indicated Condition Bit is = 1:
. | U= Jump if the 4004 Test Signal is= 0

Jump if the Carry Bitis=1
;Jump if the Accumulator =0

Invert ALL the other conditions

More than one condition at a time may be tested. If the leftmost bit of the condition code is zero, a jump occurs if any
of the remaining specified conditions is true (an “or” condition). If the leftmost bit is one, a jump occurs if the logical
inverse of the “or” condition is true. In Boolean notation, the equation for the jump condition is as follows:

JUMP =G, * ((ACC=0) * C,+ (carry = 1) * C; +TEST * C, +

C1* (((ACC <> 0) +C;) + ((carry = 0) +C;) * (TEST+C,)

104

Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/4ed95ca321cd0e9f19a89ef0ebea2b0ebe52952c/pyntel4004/src/hardware/machine.py#L360

Pyntel4004, Release ENV_VERSION

Test Pin 10

A special capability of the JCN instruction is being able to read the status of Pin 10 on the processor.

Pin 10 (shown below toward the top left of the layout) is the “TEST” pin.

Since this is a software implementation of the i4004, a directive has been introduced to the assembler to allow simulation

of Pin 10.

The directive ‘pin’ can set the pin 10 to be 1 or O depending oon the supplied value e.g.

pin 1
pin 0

The subsequent value of Pin 10 will be used until it is changed again, or the program ends.

Rasot a Syne-Dut
Tast 10 Clk Phasa 2
Memaory -
Caontrol —(CM-ROM i Clk Phasa 1
Output
Yoo |2 Vss
/CM-RAMll 13 D:’.‘;“‘
CM-RAM2 14 Dz
Memory
Cantral — — DMIaIDE-u:
Oulputs - .
CM-RAM1 18 o
CM-BAMD [18 oo
N P
Example program
/ Example program
org ram
1dm 10
jcn 4 done
dac
jun loop

done, end

Loads the value 10 into the accumulator, and decrements it by one. Once the value of the accumulator is zero, the

program ends.

10.16. Instruction Summary 105

Pyntel4004, Release ENV_VERSION

Notes

If the JCN instruction is located in the last two locations of a page in memory and the jump condition is true f the highest
4 bits of the program counter are incremented by 1, causing control to be transferred to the corresponding location on
the next memory page.

ISZ
Name Increment index register skip if zero
Function The content of the designated index register is incremented by 1. The accumulator and
carry/link are unaffected. If the result is zero, the next instruction after ISZ is executed.
If the result is different from 0, program control is transferred to the instruction located
at the 8 bit address A2A2A2A2, AIA1A1A1 on the same page (ROM) where the ISZ
instruction is located.
Syntax ISZ(R, 8-bit address)
Assembled
Binary 0111R A2A2A2A2, A1ATA1A1
Decimal 112, then incrementing by 1 until 127 (1st word)
Hexadecimal 0x70, then incrementing by 1 until 0x7F (1st word)
(RRRR) + 1 === RRRR
If result =0
(Py) == Py
(Pm) == Py
(PL+2) w P,
If result <> 0
(Pu) == Py
(A2 Az Az Ay) e Pm
Symbolic (A A Asha) = Py
Execution 2 words, 8-bit code and an execution time of 10.8 u sec
Side-effects Not Applicable
Implemented isz

Detailed Description

The index register specified by REG is incremented by one. If the result is 0000, program execution continues with
the next sequential instruction. If the result does not equal 0000 the 8 bits specified by ADDR replace the lowest 8
bits of the program counter. The highest 4 bits of the program counter are unchanged. Therefore, program execution
continues at the specified address on the same page of memory in which the ISZ instruction is located.

The carry bit is not affected

106 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

A|AJAJALAA,

0000 for Register 0
0001 for Register 1
0010 for Register 2
0011 for Register 3
0100 for Register 4
0101 for Register 5
0110 for Register 6
0111 for Register 7
1000 for Register 8
1001 for Register 9
1010 for Register 10
1011 for Register 11
1100 for Register 12
1101 for Register 13
1110 for Register 14
1111 for Register 15

Y

8-bit address

NOTE: If ISZ is located on words 254 and 255 of a ROM page, when ISZ is executed and the result is not zero, program
control is transferred to the 8-bit address located on the next page in sequence and not on the same page where ISZ is

located. .. rubric:: Example program

/ Example program

org ram
fim Op

1p xch 2
isz 0 1p
end

The FIM instruction loads registers 0 and 1 with O. The XCH is then executed. Program execution continues until the
ISZ is reached. Register 0 is incremented to contain 1, and since this result is non-zero, program control is transferred
back to location labelled “Ip”. This process continues until register 0 = 1111. Then the ISZ increments register 0
producing a result of OOOO, and execution continues with the instruction at after the ISZ (which is the END).

Instructions which alter the normal execution sequence of instructions.

Code | Description

JUN | Jump to location ADDR.

JIN Jump to the address in register pair RP.

JCN Jump to ADDR if condition true.

1SZ Increment REG. If zero, skip. If non zero, jump to ADDR

10.16. Instruction Summary

107

Pyntel4004, Release ENV_VERSION

10.16.6 Subroutine Linkage Instructions

JMS
Name Jump to Subroutine
Function Jump to a subroutine.
Syntax JMS (address)
Assembled
Binary 0101AAAA AAAAAAAA
Decimal 80, then incrementing by 1 until 95 (1st word)
Hexadecimal 0x50, then incrementing by 2 until Ox5F (1st word)
A3 A3 A3 A3 — PH
A A A A, w Py,
A1 A1 Al A1 —_— P|_
Symbolic
Execution 2 words 16-bit code and an execution time of 21.6 w sec
Side-effects Not Applicable
Implemented jms

Detailed Description

The address of the instruction immediately following the JMS is written to the address stack for later use by a BBL
instruction. Program execution continues at memory address ADDR, which may be on any page.

The carry bit is not affected.

The disassembly of the instruction below shows how the register pair is represented in the opcode.

A, A,

AlA,

AJAJAAAJALA A,

Y

12-bit address

This instruction and the JUN instruction , use a 12-bit address, and can reference any memory location. Their operation
is not influenced by their position within a page of memory, whereas some other instructions are.

Therefore, only a JUN or JMS instruction should be used to transfer control from one page of memory to another.

108

Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Example program snippet for illustration

jms lab
xch 0

lab, inc 1

bbl 6

Normally, program instructions are executed sequentially.

A 12-bit register called the program counter holds the address of the instruction to be executed. The JMS instruction
replaces the program counter contents, causing program execution to continue at that address, whilst also placing the
address of the next instruction on the stack.

Thus the execution sequence of the above example is as follows:

The jms instruction replaces the contents of the program counter with the address of the label /ab. The next instruction
executed is inc.

Additional instructions are then executed, then the bbl instruction.

The bbl instruction then retrieves the topmost address from the stack (the address of the xch instruction), sets the
program counter to that address.

From here, normal program execution continues at that location.

BBL

Name Load Accumulator Immediate

Function The 4 bits of data, DDDD stored in the OPA field of the insruction word | br| are loaded
into the accumulator. The previous contents of the acummulator | br | are lost. The
carry/link bit is unaffected.

Syntax LDM(D)

Assembled

Binary 1101 DDDD

Decimal 192, then incrementing by 1 until 207 (1st word).

Hexadecimal 0xCO0, then incrementing by 1 until OxCF (1st word).

DDDD == ACC

Symbolic

Execution 1 word, 8-bit code and an execution time of 10.3 p sec

Side-effects Not Applicable

Implemented bbl

10.16. Instruction Summary 109

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Detailed Description

The program counter (address stack) is pushed down one level. Program control transfers to the next instruction fol-
lowing the last jump to subroutine (JMS) instruction.

The 4 bits of data DDDD stored in the OPA portion of the instruction are loaded to the accumulator.

BBL is used to return from a subroutine to main program. The carry bit is not affected.

4-bit data item

Note
In the example Zere, the BBL instruction loads the value 6 into the accumulator. The address 013 is read into the
program counter, and program execution proceeds with the XCH instruction.

This section describes the commands which call and cause return from subroutines. They cause a transfer of program
control and use the address stack XXXX(see Sections 2.4 and 2.7¢7)XXX

Code | Description
JMS Call subroutine and push return address onto stack.
BBL Return from subroutine and load accumulator with immediate DATA.

10.16.7 Nop Instructions

NOP
Name No Operation
Function No operation performed
Syntax NOP
Assembled
Binary 0000 0000
Decimal 0
Hexadecimal 0x00
Symbolic Not Applicable
Execution 1 word, 8-bit code and an execution time of 10.8 y sec
Side-effects Not Applicable
Implemented nop

110 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/4ed95ca321cd0e9f19a89ef0ebea2b0ebe52952c/pyntel4004/src/hardware/machine.py#L54

Pyntel4004, Release ENV_VERSION

Description

No operation is performed. The program counter is incremented by one and execution continues with the next sequential

instruction.

Example program

/ Example program
org ram
nop
end

The program does nothing, since the NOP operation is the only operator in the program.

Notes

The NOP instruction is useful for padding out memory positions for those operators that function differently at the page
boundary, such that they do not end at a page boundary.

This instruction occupies one byte.

Code | Description
NOP | No Operation

10.16.8 Memory Selection Instructions

SRC
Name Send Register Control
Function The 8 bits contained in the register pair specified by RP are used as an address. This
address may designate a particular DATA RAM data character, a DATA RAM status
character, a RAM output port, or a ROM input/output port.
Syntax SRC(RPp)
Assembled
Binary 0010RPp1
Decimal 33, then incrementing by 2 until 47 (1st word)
Hexadecimal 0x21, then incrementing by 2 until 0x2F (1st word)
(RP,) == DB(x2)
(RP,.;) = DB(x3)
Symbolic
Execution 1 words, 8-bit code and an execution time of 10.3 4 sec
Side-effects Not Applicable
Implemented src

10.16. Instruction Summary 111

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Detailed Description

The address contained within the specified register pair designates either a particular DATA RAM data character, a
DATA RAM status character, a RAM output port, or a ROM input/output port. However, the address designates all of
these simultaneously; it is up to the programmer to then write the correct /O or RAM instruction to access the proper

entity.

The disassembly of the instruction below shows how the register pair are represented in the opcode.

O|O[1|O|R

s

R

R,

0

—

000 for register pair 0 or OP
001 for register pair 2 or 1P
010 for register pair 4 or 2P
011 for register pair 6 or 3P
100 for register pair 8 or 4P
101 for register pair 10 or 5P
110 for register pair 12 or 6P
111 for register pair 14 or 7P

The address sent by the SRC remains in effect until changed by a subsequent SRC.
The only DATA RAM bank which receives the SRC address is the one selected by the last previous DCL instruction.

The 8 bits of the address sent by the SRC are interpreted in one of four ways, depending on the context as follows:

When referring to a DATA RAM Character

I

1 of 16 characters

within the register
1 of 4 registers within the

DATA RAM chip

1 of 4 DATA RAM chips
within the DATA RAM bank
previously selected with a

DCL instruction

112 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

When referring to a DATA RAM Status Character

Not relevant

1 of 4 registers within the
DATA RAM chip
1 of 4 DATA RAM chips
within the DATA RAM bank
previously selected with a
DCL instruction

When referring to a DATA RAM Output Port

Not relevant

The port associated
with 1 of 4 DATA
RAM chips within
the DATA RAM bank
previously selected
by a DCL instruction.

When referring to a ROM I/0 Port

Not relevant

The port associated with 1 of 16 ROMs.

10.16. Instruction Summary 113

Pyntel4004, Release ENV_VERSION

Example program

/ Example program

org ram
fim 1p 180
src 1p
end
DCL
Name Designate Command Line
Function Select a RAM bank
Syntax DCL
Assembled
Binary 11111101
Decimal 253
Hexadecimal 0xFD
a0 == CMO
al == CM1
a2 == CM2
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 p sec
Side-effects Not Applicable
Implemented dcl

Detailed Description

The content of the three least significant accumulator bits is transferred to the comand control register within the CPU.
This instruction provides RAM bank selection when multiple RAM banks are used, since there could be up to § RAM
banks.

(If no DCL instruction is sent out, RAM Bank number zero is automatically selected after application of at least one
RESET).

DCL remains latched until it is changed.

The opcode for this instruction does not contain any additional data:

111111111 |0|1

The least significant 3 bits of the accumulator determine which RAM bank is selected (detailled in the table below,
along with the bits of the command register).

114 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Accumulator CM-RAM ; en- RAM Bank
abled
0x000 CM-RAM 0
0x001 CM-RAM , 1
0x010 CM-RAM , 2
0x100 CM-RAM ; 3
0x011 CM-RAM CM-RAM , 4
0x101 CM-RAM , CM-RAM ; 5
0x110 CM-RAM , CM-RAM ; 6
0x111 CM-RAM CM-RAM , CM-RAM ; 7

This section describes instructions which specify DATA RAM data and status characters, RAM output ports and ROM

input and output ports to be operated on by I/O and RAM instructions described here.

Code | Description

SRC Contents of RP select a RAM or ROM address to be used by I/O and RAM instructions.

DCL | Select a particular RAM bank.

10.16.9 lo And Ram Instructions

WRM
Name Write accumulator into RAM character
Function The accumulator content is written into the previously selected RAM main memory
character location. The accumulator and carry/link are unaffected.
Syntax WRM
Assembled
Binary 11100000
Decimal 224
Hexadecimal 0xEQ
(ACC) we M
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 u sec
Side-effects Not Applicable
Implemented wrm

10.16. Instruction Summary

115

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Detailed Description

The contents of the accumulator are written into the DATA RAM data character specified by the last SRC instruction.
The carry bit and the accumulator are not affected.

The opcode for this instruction does not contain any additional data:

1]1]1|0]0]0]0|0

Example program

The example program will cause the DATA RAM data character number 4 of register 3 of chip 2 of the DATA RAM
bank selected by the last DCL instruction to contain 15 (1111b).

/ Example program
FIM OP 180

SRC OP

LDM 15

WRM

WMP
Name Write RAM Port
Function Write to a specified RAM port
Syntax WMP
Assembled
Binary 11100001
Decimal 225
Hexadecimal 0xE1
(ACC) == RAM Output Register

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 y sec
Side-effects Not Applicable
Implemented wmp

Detailed Description

The contents of the accumulator are written to the output port associated with the DATA RAM chip selected by the last
SRC instruction. The data is available on the output pins until a new WMP is executed on the same RAM chip. The
LSB bit of the accumultor appears on OO0, (Pin 16), of the 4002.

The carry bit and the accumulator are unchanged.

The opcode for this instruction does not contain any additional data:

1|111]0]0}|0|0|1

116 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Example Program

The example program will write the value 6 to the output port associated with the DATA RAM chip 2 of the currently
selected DATA RAM bank.

/ Example program

FIM 3P 64

SRC 3P

LDM 6

WMP

WRR
Name Write ROM Port
Function Write to a specified ROM port
Syntax WRR
Assembled
Binary 11100010
Decimal 226
Hexadecimal 0xE2
(ACC) w= ROM Output Lines

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 u sec
Side-effects Not Applicable
Implemented wIT

Detailed Description

The content of the accumulator is transferred to the ROM output port of the previously selected ROM chip. The data
is available on the output pins until a new WRR is executed on the same chip. The LSB bit of the accumulator appears
on I/O 0, (pin 16), of the 4001.

No operation is performed on I/O lines coded as inputs.
The carry bit and the accumulator are unchanged.

The opcode for this instruction does not contain any additional data:

1|111|0|0|0]1|0

10.16. Instruction Summary 117

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Example Program

The example program will write the value 15 to the output port associated with the ROM chip 2.

/ Example program

FIM 4P 64

SRC 4P

LDM 15

WRR

WPM
Name Write accumulator into RAM character
Function Read/Write half a byte to Program RAM from accumulator.
Syntax WPM
Assembled
Binary 11100011
Decimal 227
Hexadecimal 0xE3
(ACC) w=# (PRAM)

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 p sec
Side-effects Not Applicable
Implemented wpm

Detailed Description

This is a special instruction which may be used to write the contents of the accumulator into a half byte of program
RAM,or read the contents of a half byte of program RAM into a ROM input port where it can be accessed by a program.
The carry bit is not affected.

The opcode for this instruction does not contain any additional data:

111]1]0]0|0]1]1

Notes

Two WPM instructions must always appear in close succession; that is, each time one WPM instruction references a
half byte of program RAM as indicated by an SRC address, another WPM must access the other half byte before the
SRC address is altered. An internal counter keeps track of which half-byte is being accessed. If only one WPM occurs,
this ounter will be out of sync with the program and errors will occur. In this situation a RESET pulse must be used to
re-initialize the machine.

A WPM instruction requires an SRC address to access program RAM. Whenever a WPM is executed, the DATA
RAM which happens to correspond to this SRC address will also be written. If data needed later in the program
is being held in such DATA RAM, the programmer must save it elsewhere before executing the WPM instruction.

118 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Storing Data Into Program RAM

A program must perform the following actions in order to store eight bits of data into a program RAM location:

(1) The value 1 must be written to ROM port number 14. This is a “write enable” signal, permitting the store
operation to work.

(2) The highest 4 bits of the program RAM address to be accessed must be written to ROM port number 15.
(3) The lowest 8 bits of the program RAM address to be accessed must be sent out by an SRC instruction.

(4) The higher 4 bits of data to be written must be loaded into the accumulator and written with the first WPM; the
lower 4 bits of data must then be loaded into the accumulator and written with the second WPM.

(5) The value 0 must be written to ROM port number 14, clearing the “write enable”.

Reading Data From Program RAM

A program must perform the following actions in order to read eight bits of data from a program RAM location:
(1) The highest 4 bits of the program RAM address to be accessed must be written to ROM port 15.
(2) The lowest 8 bits of the program RAM address to be accessed must be sent out by an SRC instruction.

(3) Two WPM instructions in succession must be executed. The first reads the leftmost 4 bits of the program RAM
location into ROM port 14; the second reads the rightmost 4 bits of the program RAM location into ROM port
15.

Example Program

The following program writes to a program RAM location whose address is held in status characters 0, 1, and 2 of
DATA RAM register 0 of DATA RAM chip 0, shown below.

Data RAM Chip 0 Program RAM
1
1 1
Register 0 41AB Ox4AA
Register 1 Ox4AB
Register 2 OXAAC
Register 3 Ox4AD
H_J
Status Characters 1 1
/ Example program
FIM OP 180
SRC oOP
LDM 15
WRM
FIM oOP 224
SRC oP / Select ROM port 14.
LDM 1
WRR / Turn on write enable.

(continues on next page)

10.16. Instruction Summary 119

Pyntel4004, Release ENV_VERSION

(continued from previous page)

/ Set up PRAM address.
/
FIM oP 0
SRC oOP / Select DATA RAM chip 0 register 0.
RD1 / Read middle 4 bits of address.
XCH 10 / Save in register 10.
RD2 / Read lowest 4 bits of address.
XCH 11 / Save in register 11.
RDO / Read highest 4 bits of address.
FIM opP 240
SRC oOP / Select ROM port 15.
WRR / Write high address.
SRC 5P / Write middle + low address (RP5)
/
LD 2 / High 4 data bits to accumulator.
WPM / Write to PRAM
LD 3 / Low 4 data bits to accumulator.
WPM / Write to PRAM
FIM oP 224
SRC oP / Select ROM port 14.
CLB
WRR / Turn off write enable.
WRn
Name Write Data Ram Status Character
Function The content of the accumulator is written into the RAM status character n of the pre-
viously selected RAM register.
Syntax WRO0, WR1, WR2, WR3
Assembled
Binary 11100100, 11100101, 11100110, 11100111,
Decimal 228,229, 230, 231
Hexadecimal 0xE4, OxES5, OxE6, OXE7
(ACC) == MSn
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 y sec
Side-effects Not Applicable
Implemented wrn
120 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Detailed Description

The contents of the DATA RAM status character whose number from O to 3 is specified by n, associated with the DATA
RAM register specified by tbe last SRC instruction, are replaced by the contents of the accumulator.

The carry bit and the accumulator are not affected.

The DATA RAM status character is encoded in the opcode as shown below:

111]1|0|O|1]S|S

|

00 for Character 0
01 for Character 1
10 for Character 2
11 for Character 3

Example program

The example program will write the value 2 into status character 1 of DATA RAM register 0 of chip 0 of the currently
selected DATA RAM bank.

/ Example program

FIM 0P 0
SRC 0P
LDM 2
WR1
RDM
Name Read RAM character
Function The content of the previously selected RAM main memory character is transferred to
the accumulator.
Syntax WRM
Assembled
Binary 11101001
Decimal 233
Hexadecimal 0xE9
(M) == ACC
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 x sec
Side-effects Not Applicable
Implemented rdm

10.16. Instruction Summary 121

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Detailed Description

The DATA RAM data character specified by the last SRC instruction is loaded into the accumulator.
The carry bit and the data character are not affected.

The opcode for this instruction does not contain any additional data:

1|1|1|0]1|0|0|1

Example program

The example will read the contents of DATA RAM data character number 5 of register O of chip O of the currently
selected DATA RAM bank into the accumulator.

/ Example program

FIM 2P 5

SRC 2P

RDM

RDR
Name Read ROM Port
Function The data present at the input lines of the previously selected ROM chip is transferred
to the accumulator.
Syntax RDR
Assembled
Binary 11101010
Decimal 234
Hexadecimal 0xEA
(ROM input lines) == ACC

Symbolic
Execution 1 word, 8-bit code and an execution time of 10.8 y sec
Side-effects Not Applicable
Implemented rdr

Detailed Description

The ROM port specified by the last SRC instruction is read. When using the 4001 ROM, each of the 4 lines of the port
may be an input or an output line; the data on the input lines is transferred to the corresponding bits of the accumulator.
Any output lines cause either a 0 or a 1 to be transferred to the corresponding bits of the accumulator.

The opcode for this instruction does not contain any additional data:

1|1|1|0|1}]0|1|0

122 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Example

The following instructions will read the contents of the port associated with ROM number 10 into the accumulator.

/ Example
FIM 3P 160
SRC 3P
RDR

The rdr operation above is carried out as follows:

Accumulator = 1010
Data Character = 0111
Carry = 0

Result 1 0001

The accumulator contains 1 and the carry bit is set.

If the leftmost I/O line is an output line and the remaining I/O lines are input lines containing 010b, then the accumulator
will contain either 1010b or 0010b.

I30,0:1 (Acc)
1XX01 1(1or0)(10r0)0
ROM pins

Note

On the INTELLEC 4, a ROM port may be used for either input or output. If programs tested on the INTELLEC 4 are
to be run later with a 4001 ROM, the programmer must be careful not to use one port for both functions.

Note
Whether a 0 or a 1 is transferred is a function of the hardware and not under control of the programmer. That is to say,

when a 4001 ROM chip is ordered, it is required to determine at that stage what the functionality of the pins should
be. Once ordered, the decision cannot be reverted. An order form can be downloaded here

RDn

10.16. Instruction Summary 123

Pyntel4004, Release ENV_VERSION

Name Read Data from Ram Status Character
Function The 4-bits of status character n for the previously selected RAM register are transferred
to the accumulator.
Syntax RDO, RD1, RD2, RD3
Assembled
Binary 11101100, 11101101, 11101110, 11101111,
Decimal 236, 237, 238, 239
Hexadecimal 0xEC, OxED, OxEE, OxEF
MSn == ACC
Symbolic
Execution 1 word, 8-bit code and an execution time of 10.3 y sec
Side-effects Not Applicable
Implemented rdn

Detailed Description

The DATA RAM status character whose number from 0 to 3 is specified by “n”, associated with the DATA RAM
register specified by the last SRC instruction, is loaded into the accumulator.

The carry bit and the status character are not affected.

The DATA RAM status character is encoded in the opcode as shown below:

1]111]0]1|1|S|S

e —

00 for Character 0
01 for Character 1
10 for Character 2
11 for Character 3

Example program

The example program will read the contents of DATA RAM status character 3 of register O of chip O of the currently
selected DATA RAM bank into the accumulator.

/ Example program

FIM 2P 5
SRC 2P
RD3

124 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

ADM
Name Addd DATA RAM to accumulator with carry
Function The content of the previously selected RAM main memory character is added to the
accumulator with carry.
Syntax ADM
Assembled
Binary 11101011
Decimal 235
Hexadecimal 0xEB
Symbolic (M) + (ACC) + (CY) == ACC, CY
Execution 1 word, 8-bit code and an execution time of 10.8 sec
Side-effects Depending on the result, the carry bit is reset or set.
Implemented adm

Detailed Description

The DATA RAM data character specified by the last SRC instruction, plus the carry bit, are added to the accumulator.
The carry bit will be set if the result generates a carry, otherwise. the data character is not affected.

The opcode for this instruction does not contain any additional data:

Example

111]1]0|1|0|1|1

In this example, the carry bit = 0, the accumulator contains a value of 10, and DATA RAM character 0 of register O of

chip O contains 7.

/ Example
FIM oP
SRC OP
ADM

The adm operation above is carried out as follows:

Accumulator
Data Character
Carry

Result 1

The accumulator contains 1 and the carry bit is set.

10.16. Instruction Summary 125

Pyntel4004, Release ENV_VERSION

SBM
Name Subtract DATA RAM from memory with borrow
Function The content of the previously selected RAM character is subtracted from the accumu-
lator with borrow.
Syntax SBM
Assembled
Binary 11101000
Decimal 232
Hexadecimal OxES8
Symbolic (M) + (ACC) + (CY) == ACC, CY
Execution 1 word, 8-bit code and an execution time of 10.8 u sec
Side-effects Depending on the result, the carry bit is reset or set.
Implemented sbm

Detailed Description

The value of the DATA RAM character specified by the last SRC instruction is subtracted from the accumulator with
borrow. The data character is unaffected. A borrow from the previous subtraction is indicated by the carry bit being
equal to one at the beginning of this instruction. No borrow from the previous subtraction is indicated by the carry
bit being equal to zero at the beginning of this instruction. This instruction sets the carry bit if the result generates
no borrow, and resets the carry bit if the result generates a borrow. The subtract with borrow operation is actually
performed by complementing each bit of the data character and adding the resulting value plus the complement of the
carry bit to the accumulator.

Notes

This instruction may be used to subtract numbers greater than 4 bits in length. The carry bit must be complemented by
the program between each required subtraction operation. For an example of this, see “Decimal Subtraction”:.

The opcode for this instruction does not contain any additional data:

1]1]1]0|1j0|0|O

Example

In order to perform a normal subtraction, the carry bit should be zero.

Assume the carry bit is 1, the accumulator contains 7, and the DATA RAM character 1 of register O of chip O contains
5, the SBM will perform the following operation:

/ Example
FIM 1P 1
SRC 1P
SBM

The sbm operation above is carried out as follows:

126 Chapter 10. MCS-4 Assembly Language Programming Manual

https://github.com/alshapton/Pyntel4004/blob/5e9f4253d8a412f6a3ec8fca5e3acfc88e0861c3/pyntel4004/src/hardware/machine.py#L208

Pyntel4004, Release ENV_VERSION

Accumulator = 0111
~ Data Character = 1010 (Character = 0 1 0 1)
~ Carry = 0 (carry = 1)

Result 0 0001

Carry indicates a borrow

The accumulator contains 1 and the carry bit is reset.

This section describes instructions which access DATA RAM characters or perform input or output operations. One
instruction, WPM, allows the programmer to read or write 8-bit program RAM locations. These instructions use
addresses selected by the DCL and SRC instructions.

Instructions in this class occupy one byte as follows:

%_J
0000 for WRM | 1000 for SBM
0001 for WMP | 1001 for RDM
0010 for WRR | 1010 for RDR
0011 for WPM | 1011 for ADM
0100 for WRO | 1100 for RDO
0101 for WR1 1101 for RD1
0110 for WR2 | 1110 for RD2
0111 for WR3 1111 for RD3

Code | Description

WRM | Write accumulator to RAM.

WMP | Write accumulator to RAM output port

WRR | Write accumulator to ROM output port.

WPM | Write accumulator to Program RAM.

WRn Write accumulator to RAM status char&cter n (n =0, 1, 2 or 3).

RDM | Load accumulator from RAM.

RDR | Load accumulator from ROM input port.

RDn Load accumulator from RAM status charactern (n=0, 1, 2 or 3) .

ADM | Add RAM data plus carry to accumulator.

SBM Subtract RAM data from accumulator with borrow.

This is a summary of 4004 instructions.

Abbreviations used are as follows:

10.16. Instruction Summary

127

Pyntel4004, Release ENV_VERSION

Abbreviation | Description
A Accumulator.
A, Bit n in the accumulator, where n may have any value from O to 3.
ADDR A read-only memory or program random-access memory address.
carry The carry bit.
PC The 12-bit Program Counter.
PCH The high-order 4 bits of the Program Counter.
PCL The low-order 4 bits of the Program Counter.
PCM The middle 4 bits of the Program Counter.
RAM Random Access Memory.
REG Any index register from 0 to 15.
RO Index Register O.
R1 Index Register 1.
ROM Read Only Memory.
RP Any index register pair from OP to 7P.
STK The address stack

value

The number obtained by complementing each bit of “value”.

XY The value obtained by concatenating the values X and Y.
[] An optional field enclosed by brackets.
@) Contents of register or memory enclosed by parentheses.

— Replace value on left hand side of arrow with value on right hand side.

Table 1: Instruction Summary

Group

Definition

Index Register

Instructions

Instructions which involve index registers or register pairs.

Index Register

Instructions which involve an operation between an index register and the accumulator. Instruc-

to Accumulator | tions in this class occupy one byte.

Instructions

Accumulator Instructions which operate only on the contents of the accumulator and/or the carry bit. Instruc-
Instructions tions in this class occupy one byte.

Immediate Instructions which use data that is part of the instruction itself.

Instructions

Transfer Of | Instructions which alter the normal execution sequence of instructions.

Control In-

structions

Subroutine Instructions which call and cause return from subroutines. They cause a transfer of program
Linkage In- | control and use the address stack.

structions

No-Operation

This instruction occupies one byte.

Instruction
Memory Instructions which specify DATA RAM data and status characters, RAM output ports and ROM
Selection input and output ports to be operated on by I/O and RAM instructions

Instructions

Input/Output Instructions which access DATA RAM characters or perform input or output operations. One
and RAM | instruction, WPM, allows the programmer to read or write 8-bit program RAM locations. These
Instructions instructions use addresses selected by the DCL and SRC instructions.

128 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

10.17 Instruction Machine Codes

In order to help the programmer examine memory when debugging programes, this list provides the assembly language
instruction represented by each of the 256 possible instruction code bytes. Where an instruction occupies two bytes,
only the first (code) byte is given.

Table 2: Instruction Machine Codes

Decimal | Octal | Hex | Mnemonic | Parameter | Comment
0 0 0 NOP

1 1 1 Not Used

2 2 2 Not Used

3 3 3 Not Used

4 4 4 Not Used

5 5 5 Not Used

6 6 6 Not Used

7 7 7 Not Used

8 10 8 Not Used

9 11 9 Not Used

10 12 A Not Used

11 13 B Not Used

12 14 C Not Used

13 15 D Not Used

14 16 E Not Used

15 17 F Not Used

16 20 10 JCN 0 CN=0
17 21 11 JCN 1 CN=1
18 22 12 JCN 2 CN=2
19 23 13 JCN 3 CN=3
20 24 14 JCN 4 CN=4
21 25 15 JCN 5 CN=5
22 26 16 JCN 6 CN=6
23 27 17 JCN 7 CN=7
24 30 18 JCN 8 CN=8
25 31 19 JCN 9 CN=9
26 32 1A JCN 10 CN=10
27 33 1B JCN 11 CN=11
28 34 1C JCN 12 CN=12
29 35 1D JCN 13 CN=13
30 36 1E JCN 14 CN=14
31 37 1F JCN 15 CN=15
32 40 20 FIM OoP

33 41 21 SRC 0

34 42 22 FIM 1P

35 43 23 SRC 1

36 44 24 FIM 2P

37 45 25 SRC 2

38 46 26 FIM 3P

39 47 27 SRC 3

40 50 28 FIM 4P

continues on next page

10.17.

Instruction Machine Codes

129

Pyntel4004, Release ENV_VERSION

Table 2 - continued from previous page

Decimal | Octal | Hex | Mnemonic | Parameter | Comment
41 51 29 SRC 4

42 52 2A FIM 5P

43 53 2B SRC 5

44 54 2C FIM 6P

45 55 2D SRC 6

46 56 2E FIM 7P

47 57 2F SRC 7

48 60 30 FIN 0

49 61 31 JIN 0

50 62 32 FIN 1

51 63 33 JIN 1

52 64 34 FIN 2

53 65 35 JIN 2

54 66 36 FIN 3

55 67 37 JIN 3

56 70 38 FIN 4

57 71 39 JIN 4

58 72 3A FIN 5

59 73 3B JIN 5

60 74 3C FIN 6

61 75 3D | JIN 6

62 76 3E FIN 7

63 77 3F JIN 7

64 100 | 40 | JUN M
65 101 41 JUN P
66 102 |42 | JUN M
67 103 43 JUN P
68 104 44 JUN P
69 105 45 JUN P
70 106 46 JUN)
71 107 47 JUN P
72 110 48 JUN P
73 111 49 JUN P
74 112 4A | JUN)
75 113 4B JUN P
76 114 4C | JUN)
77 115 4D JUN P
78 116 4E JUN)
79 117 4F JUN P
80 120 50 JMS P
81 121 51 JMS P
82 122 52 JMS P
83 123 53 JMS P
84 124 54 JMS P
85 125 55 JMS P
86 126 56 JMS P
87 127 |57 | JMmS M
88 130 58 JMS)
89 131 59 JMS)

continues on next page

130

Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

Table 2 - continued from previous page

Decimal | Octal | Hex | Mnemonic | Parameter | Comment
90 132 5A JMS P
91 133 5B JMS)
92 134 5C JMS P
93 135 5D | JMS P
94 136 | 5E | JMS M
95 137 5F JMS P
96 140 60 INC 0

97 141 61 INC 1

98 142 62 INC 2

99 143 63 INC 3

100 144 64 INC 4

101 145 65 INC 5

102 146 66 INC 6

103 147 67 INC 7

104 150 68 INC 8

105 151 69 INC 9

106 152 6A | INC 10

107 153 6B INC 11

108 154 6C INC 12

109 155 6D INC 13

110 156 6E INC 14

111 157 6F INC 15

112 160 70 1SZ 0

113 161 71 1S7 1

114 162 72 1S7Z 2

115 163 73 1S7 3

116 164 74 1S7Z 4

117 165 75 JAYA 5

118 166 76 1SZ 6

119 167 71 ISZ 7

120 170 78 1SZ 8

121 171 79 1SZ 9

122 172 TA 1S7 10

123 173 7B 1S7Z 11

124 174 7C 1S7 12

125 175 7D IAYA 13

126 176 7E 1S7 14

127 177 TF IAYA 15

128 200 80 ADD 0

129 201 81 ADD 1

130 202 82 ADD 2

131 203 83 ADD 3

132 204 84 ADD 4

133 205 85 ADD 5

134 206 86 ADD 6

135 207 87 ADD 7

136 210 88 ADD 8

137 211 89 ADD 9

138 212 8A | ADD 10

continues on next page

10.17. Instruction Machine Codes

131

Pyntel4004, Release ENV_VERSION

Table 2 - continued from previous page

Decimal | Octal | Hex | Mnemonic | Parameter | Comment
139 213 8B ADD 11
140 214 8C ADD 12
141 215 8D ADD 13
142 216 8E ADD 14
143 217 8F ADD 15
144 220 90 SUB 0
145 221 91 SUB 1
146 222 92 SUB 2
147 223 93 SUB 3
148 224 94 SUB 4
149 225 95 SUB 5
150 226 96 SUB 6
151 227 97 SUB 7
152 230 98 SUB 8
153 231 99 SUB 9
154 232 9A SUB 10
155 233 9B SUB 11
156 234 9C SUB 12
157 235 oD | SUB 13
158 236 9E SUB 14
159 237 OF SUB 15
160 240 A0 LD

161 241 Al LD

162 242 A2 LD

163 243 A3 LD

164 244 A4 LD

165 245 A5 LD

166 246 A6 | LD

167 247 A7 LD

168 250 A8 LD

169 251 A9 LD

170 252 AA | LD

171 253 AB LD

172 254 AC | LD

173 255 AD | LD

174 256 AE LD

175 257 AF LD

176 260 B0 | XCH 0
177 261 Bl XCH 1
178 262 B2 XCH 2
179 263 B3 XCH 3
180 264 B4 XCH 4
181 265 B5 XCH 5
182 266 B6 XCH 6
183 267 B7 XCH 7
184 270 B8 XCH 8
185 271 B9 XCH 9
186 272 BA XCH 10
187 273 BB XCH 11

continues on next page

132 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

Table 2 - continued from previous page

Decimal | Octal | Hex | Mnemonic | Parameter | Comment
188 274 BC XCH 12
189 275 BD XCH 13
190 276 BE XCH 14
191 277 BF XCH 15
192 300 CO0 BBL 0
193 301 Cl BBL 1
194 302 C2 BBL 2
195 303 C3 BBL 3
196 304 C4 | BBL 4
197 305 C5 BBL 5
198 306 C6 BBL 6
199 307 C7 BBL 7
200 310 C8 BBL 8
201 311 Cc9 BBL 9
202 312 CA | BBL 10
203 313 CB | BBL 11
204 314 CcC BBL 12
205 315 CD | BBL 13
206 316 CE | BBL 14
207 317 CF BBL 15
208 320 DO | LDM 0
209 321 D1 LDM 1
210 322 D2 LDM 2
211 323 D3 LDM 3
212 324 D4 LDM 4
213 325 D5 LDM 5
214 326 D6 LDM 6
215 327 D7 LDM 7
216 330 D8 | LDM 8
217 331 D9 LDM 9
218 332 DA | LDM 10
219 333 DB LDM 11
220 334 DC LDM 12
221 335 DD | LDM 13
222 336 DE LDM 14
223 337 DF LDM 15
224 340 EO WRM

225 341 El WMP

226 342 E2 WRR

227 343 E3 WPM

228 344 E4 WRO

229 345 E5 WRI1

230 346 E6 WR2

231 347 E7 WR3

232 350 E8 SBM

233 351 E9 RDM

234 352 EA | RDR

235 353 EB | ADM

236 354 EC | RDO

continues on next page

10.17. Instruction Machine Codes

133

Pyntel4004, Release ENV_VERSION

Table 2 - continued from previous page

Decimal | Octal | Hex | Mnemonic | Parameter | Comment
237 355 ED RDI

238 356 EE | RD2

239 357 EF RD3

240 360 FO CLB

241 361 F1 CLC

242 362 F2 IAC

243 363 F3 cMC
244 364 F4 CMA

245 365 F5 RAL

246 366 F6 RAR

247 367 F7 TCC

248 370 F8 DAC

249 371 F9 TCS

250 372 FA STC

251 373 FB | DAA

252 374 FC KBP

253 375 FD | DCL

254 376 FE Not Used
255 377 FF Not Used

1) Second hexadecimal digit is part of the jump address.

10.18 Programming Techniques

10.18.1 Crossing Page Boundaries

As described in Section 2, programs are held in either ROM or program RAM, both of which are divided into pages.
Each page consists of 256 8 -bit locations. Addresses O through 255 comprise the first page,256-511 comprise the
second page, and so on.

In general, it is good programming practice to never allow program flow to cross a page boundary except by using
a JUN or JMS instruction.

The following example will show why this is true. Suppose a program in memory appears as below:

Decimal Address Page 0
0
200 | P1, DM 0 <——]
253 JCN 12 P1 >
255 XCH 3

134 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

If the accumulator is non-zero when the JCN is executed, program control will be transferred to location 200, as the
programmer intended. Suppose now that an error discovered in the program requires that a new instruction be inserted
somewhere between locations 200 and 253. The program would now appear as follows:

Decimal Address Page 0
0
200 | P13, LDM 0
NEW E INSTRUCTION
254 J(.IN 12 P1
Page 1
256 XCH 3
456 «—
511

Since the JCN is now located in the last two locations of a page, it functions differently. Now if the accumulator is
non-zero when the JCN is executed, program control will be erroneously transferred to location 456, causing invalid
results. Since both the JUN and JMS instructions use 12-bit addresses to directly address locations on any page of
memory, only these instructions should be used to cross page boundaries.

10.18.2 Subroutines

Frequently, a group of instructions must be repeated many times in a program. The group may be written “n” times if it
is needed at “n” different points in a program, but better economy can be obtained by using subroutines. A subroutine
is coded like any other group of assembly language statements, and is referred to by its name, which is the label
of the first instruction. The programmer references a subroutine by writing its name in the operand field of a JMS
instruction. When the JMS is executed, the address of the next sequential instruction after the JMS is written to the
address stack (see Section 2.4), and program execution proceeds with the first instruction of the subroutine. When
the subroutine has completed its work, a BBL instruction is executed, which loads a value into the accumulator and
causes an address to be read from the stack into the program counter, causing program execution to continue with the
instruction following the JMS. Thus, one copy of a subroutine may be called from many different points in memory,
preventing duplication of code. Note also that since the address stack and the JMS instruction use 12-bit addresses,
calling programs and subroutines may be located anywhere in ROM or control program RAM (they need not be on the
same page in memory).

10.18. Programming Techniques 135

Pyntel4004, Release ENV_VERSION

Example:

Subroutine IN increments an 8 bit number passed in index register 0 and 1 and then returns to the instruction following
the last JMS instruction executed.

IN, XCH 1/ Register 1 to accumulator
IAC / Increment value and produce carry
XCH 1 / Restore register 1
JCN 10 NC / Jump if Carry is zero
INC ® / Increment high order 4 bits
NC, BBL 0 / returns

Assume IN appears as follows:

Arbitrary Memory
Address (hex)

3Co | P1,
3C2

401 1
403 .

First subroutine call
Second subroutine call

‘When the first JMS is executed, address 3C2H is written to the address stack, and control is transferred to IN. Execution
of the BBL statement will cause the address 3C2H to be read from the stack and placed in the program counter, causing
execution to continue at 3C2H (since the JMS occupies two bytes).

While IN is After BBL is
Before JMS executing performed
ADDR1 |je—— 3C2H 3C2H |j¢—
ADDR 2 ADDR2 [&— ADDR 2
ADDR 3 ADDR 3 ADDR 3

When the second JMS is executed, address 403H is written to the stack, and control is again transferred to IN. This
time, the BBL will cause execution to resume at 403H.

Note that IN could have called another subroutine during its execution, causing another address to be written to the
stack. This can occur only up to three levels, however, since the stack can hold only three addresses. Beyond this point,
some addresses will be overwritten and BBLs will transfer program control to incorrect addresses.

136 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

10.18.3 Branch Table Pseudosubroutines

Suppose a program consists of several separate routines, any of which may be executed depending upon some initial
condition (such as a bit set in the accumulator). One way to code this would be to check each condition sequentially
and branch to the routines accordingly as follows:

CONDITION = CONDITION 1 ?
IF YES BRANCH TO ROUTINE 1
CONDITION = CONDITION 2 ?
IF YES BRANCH TO ROUTINE 2

BRANCH TO CONDITION N

A sequence as above is inefficient, and can be improved by using a branch table. The logic at the beginning of the
branch table program computes an index into the branch table. The branch table itself consists of a list of starting
addresses for the routines to be selected. Using the table index, the branch table program loads the selected routine’s
starting address into a register pair and executes a “jump indirect” to that address. For example, consider a program
that executes one of five routines depending upon which bit (possibly none) of the accumulator is set:

if accumulator = 0000
if accumulator = 0001
if accumulator = 0010
if accumulator = 0100
if accumulator = 1000

Jump to routine
Jump to routine
Jump to routine
Jump to routine
Jump to routine

B W N =R

A program that provides the above logic is given below. The program is termed a “pseudosubroutine” because it is
treated as a subroutine by the programmer, (i.e. it appears just once in memory), but it is entered via a regular “jump”
instruction rather than via a JMS instruction. This is possible because the branch routines control subsequent execution,
and will never return to the instruction following JMS.

Branch Jump
Table Routines
Program

-
-
-
-
-

Normal subroutine return
sequence not followed by
Branch Table Program

ST, KBP / Convert Accum to branch table index
IAC / If accumulator = 1111, Error
JCN 4 ERR / Jump if IAC produced zero
DAC / OK, restore accumulator
FIM 0 BTL / Registers 0O and 1 are the address of the branch table
CLC / Clear Carry

(continues on next page)

10.18. Programming Techniques 137

Pyntel4004, Release ENV_VERSION

(continued from previous page)

ADD 1 / Add index to the branch table address
XCH 1 / Store back in register 1
JCN 10 NC / Jump if no carry
INC O / If carry, increment register 0
NC, FIN OP / Registers 0 and 1 (address of routine)
JIN OP / Jump to correct routine
BTL, ® + RTO / Branch table.
® + RT1 / Each entry is an 8-bit address
® + RT2 / of the specific routine to call
® + RT3
0 + RT4
ERR, . / Error handling routine

Note: Since FIM, FIN, and JIN operate with 8-bit addresses, routines ST, BTL, and RTO through RT4 must all reside
in the same page of memory.

If the accumulator held 0100 when location ST was reached, the KBP would convert it to 0011. The 8 bit address at
BTL + 3 would therefore be loaded into registers 0 and 1, and the JIN would cause program control to be transferred
to routine RT3.

10.18.4 Logical Operations

Logical AND

The AND function of two bits is given by the following truth table:

0
0]o
0

r|lo|r

Since any bit ANDed with a zero produces a zero, and any bit ANDed with a one remains unchanged, the AND function
is often used to zero groups of bits.

The following subroutine produces the AND, bit by bit, of the two 4-bit quantities held in index registers 0 and 1. The
result is placed in register O, while register 1 is set to 0. Index registers 2 and 3 are also used. For example, if register
0 =1110 and register 1 = 0011, register 0 will be replaced with 0010.

138 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

11
AND 00

The subroutine produces the AND of two bits by placing the bits in the leftmost position of the accumulator and register
2, respectively, and zeroing the right-most three bits of the accumulator and register 2. Register 2 is then added to the
accumulator, and the resulting carry is equal to the AND of the two bits.

AND, FIM 1P 11 / Register 2 = 0, Register 3 = 11

L1, LDM 0 / Get bit of Register 0, Set accumulator = 0
XCH 0 / Set Register 0 to accumulator; Register 0 = 0
RAL / Move first 'AND' bit to carry
XCH 0 / Save shifted data in Register 0, set accumulator = 0
INC 3 / Done if Register 3 = 0
XCH 3 / Register 3 to accumulator
JCN 4 L2 / Return if accumulator = 0
XCH 3 / Otherwise, restore accumulator and Register 3
RAR / Bit of Register 0 is alone in the accumulator
XCH 2 / Save first 'AND' bit in Register 2
XCH 1 / Get bit of Register 1
RAL / Move leftmost bit to carry
XCH 1 / Save shifted data in Register 1
RAR / Move second 'AND' bit to carry
ADD 2 / "ADD' gives the 'AND' of the bits in carry
JUN L1

L2, BBL 0 / Return to main program

Logical OR

The OR function of two bits is given by the following truth table:

0
0

[RN =

1]1

Since any bit ORed with a one produces a one, and any bit ORed with a zero remains unchanged, the OR function is
often used to set groups of bits to one.

The following subroutine produces the OR, bit by bit,of the two 4 bit quantities held in index registers O and 1. The
result is placed in register O while register 1 is set to 0. Index registers 2 and 3 are also used.

For example, if register O is set to 0100 and register 1 to 0011, register O will be replaced with 0111.

AND

The subroutine produces the OR of two bits by placing the bits in the leftmost position of the accumuiator and register
2, respectively, and zeroing the rightmost three bits of the accumulator and register 2. Register 2 is then added to the

10.18. Programming Techniques 139

Pyntel4004, Release ENV_VERSION

accumulator. If the resulting carry = 1, the OR of the two bits = 1. If the resulting carry = 0, the OR of the two bits is
equal to the leftmost bit of the accumulator.

OR, FIM 1P 11 / Register 2 = 0, Register 3 = 11

L1, LDM 0 / Get bit of Register 0, Set accumulator = 0
XCH 0 / Set Register 0 to accumulator; Register 0 = 0
RAL / Move first 'OR' bit to carry
XCH 0 / Save shifted data in Register 0, set accumulator = 0
INC 3 / Done if Register 3 = 0
XCH 3 / Register 3 to accumulator
JCN 4 L2 / Return if accumulator = 0
XCH 3 / Otherwise, restore accumulator and Register 3
RAR / Bit of Register 0 is alone in the accumulator
XCH 2 / Save first 'OR' bit in Register 2
LDM 0 / Get bit in Register 1, set accumulator = 0
XCH 1 / Get bit of Register 1
RAL / Move leftmost bit to carry
XCH 1 / Save shifted data in Register 1
RAR / Move second 'OR' bit to carry
ADD 2 / "ADD' gives the 'OR' of the bits in carry
JCN 2 L1 / Jump if carry = 1 because 'OR' =1
RAL / Otherwise, 'OR' leftmost bit of the accumulator,

/ transmit to carry by RAL

JUN L1

L2, BBL 0 / Return to main program

Logical XOR

The XOR function of two bits is given by the following truth table:

0
0

1
1
0

1]1

Since the exclusive OR of two equal bits produces a zero and the exclusive OR of two unequal bits produces a one, the
exclusive OR function can be used to test two quantities for equality. If the quantities differ in any bit position, a one
will be produced in the result.

The following subroutine produces the exclusive - OR of the two 4-bit quantities held in index registers O and 1. The
result is placed in register 0, while register 1 is set to 0. Index registers 2 and 3 are also used.

For example if register 0 = 0011 and register 1 = 0010, register O will be replaced with 0001.

AND

The subroutine produces the XOR of two bits by placing the bits in the leftmost position of the accumulator and register
2, respectively, and zeroing the rightmost three blts of the accumulator and register 2. Register 2 is then added to the
accumulator. The XOR of the two bits is then equal to the leftmost bit of the accumulator.

140 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

XOR, FIM 1P 11 / Register 2 = 0, Register 3 = 11

L1, LDM 0 / Get bit of Register 0, Set accumulator = 0
XCH 0 / Set Register 0 to accumulator; Register 0 = 0
RAL / Move first 'XOR' bit to carry
XCH 0 / Save shifted data in Register 0, set accumulator = 0
INC 3 / Done if Register 3 = 0
XCH 3 / Register 3 to accumulator
JCN 4 L2 / Return if accumulator = 0
XCH 3 / Otherwise, restore accumulator and Register 3
RAR / Bit of Register 0 is alone in the accumulator
XCH 2 / Save first 'XOR' bit in Register 2
LDM 0 / Get bit in Register 1, set accumulator = 0
XCH 1
RAL / Move leftmost bit to carry
XCH 1 / Save shifted data in Register 1
RAR / Move second 'XOR' bit to carry
ADD 2 / "ADD' gives the 'XOR' of the bits in carry
RAL / Otherwise, 'XOR' leftmost bit of the accumulator,

/ transmit to carry by RAL

JUN L1

L2, BBL 0 / Return to main program

There are three subroutines which produce basic logical operations:
e AND
* OR
* XOR (eXclusive OR)

10.18.5 Multi-Digit Addition

The carry bit may be used to add unsigned data quantities of arbitrary length.

Consider the following addition of two 4-digit hexadecimal numbers:

This addition may be performed by setting the carry bit = 1, then adding the two low-order digits of the numbers, then
adding the resulting carry to the two next higher order digits, and so on:

v v v
3 8 1 C
6 9 F 2 o+
A 2 0 E
| | |
Carry=1 Carry=1 Carry=0

10.18. Programming Techniques 141

Pyntel4004, Release ENV_VERSION

The following subroutine will perform a sixteen digit addition, making these assumptions:
* The two numbers to be added are stored in DATA RAM chip 0, registers O and 1.
* The numbers are stored with the least significant digit first (in character 0) .
* The result will be stored least significant digit first in register 1 replacing the contents of register 1.

¢ Index register 8 will count the number of digits (up to 16) which have been added.

9 = 1001
9 1001
Carry = 0
Result 0010
Carry 1
AD, FIM 2P 0 / REG PAIR 2P RAM CHIP O OF REG 0
FIM 3P 16 / REG PAIR 3P RAM CHIP ® OF REG 1
CLB / SET CARRY = 0
XCH 8 / SET DIGIT COUNTER = O
AD1, SRC 2P / SELECT RAM REG 0
RDM / READ DIGIT TO ACCUMULATOR
SRC 3P / SELECT RAM REG 1
ADM / ADD DIGIT + CARRY TO ACCUMULATOR
WRM / WRITE RESULT TO REG 1
INC 5 / ADDRESS NEXT CHARACTER OF RAM REG 0
INC 7 / ADDRESS NEXT CHARACTER OF RAM REG 1
ISz 8 AD1 / BRANCH IF DIGIT COUNTER < 16 (NON ZERO)
OVR, BBL 0

When location OVR is reached, RAM register 1 will contain the sum of the two 16 digit numbers arranged from low
order digit to high order digit. The reason multi-digit numbers are arranged this way is that it is easier to add numbers
from low order to high order digit, and it is easier to increment addresses than to decrement them.

The first time through the program loop, index register pair 2 (index register 4 and 5) contains 0 and index register pair 3
(index registers 6 and 7) contains 16, referencing the first data characters of DATA RAM registers 0 and 1, respectively.

On succeeding repititions of the loop, index registers 5 and 7 are incremented, referenecing sequential data characters,
until all 16 digits have been added.

Data RAM chip 0 before addition

Register0 J[CJ 1§ 8] 3JOJOfjoOjJoOjJoO 0 ojo
Register1 |2 JFRo9]6JO0jofjojojo 0 ojo
Register 2
Register 3
Data RAM chip O after addition Status Characters
Register0 |C | 1§ 8] 3JOjJOjoOjJoOJoO ojogjojo
Register1 |E JOg2| AJOJOjO]JoOJoO OJogjojo
Register 2
Register 3

Status Characters

142

Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

A variant of the subroutine is below - this time for an arbitary number of 16 digit numbers. The only difference is the
addition of an DAA instruction.

AD, FIM 2P 0 / REG PAIR 2P RAM CHIP 0 OF REG 0
FIM 3P 16 / REG PAIR 3P RAM CHIP O OF REG 1
CLB / SET CARRY=0
XCH 8 / SET DIGIT COUNTER = 0
AD1, SRC 2P / SELECT RAM REG 0
RDM / READ DIGIT TO ACCUMULATOR
SRC / SELECT RAM REG 1
ADM / ADD DIGIT + CARRY TO ACCUMULATOR
DAA / ADJUST FOR DECIMAL
WRM / WRITE RESULT TO REG 1
INC 5 / ADDRESS NEXT CHARACTER OF RAM REG 0
INC 7 / ADDRESS NEXT CHARACTER OF RAM REG 1
ISZ 8 AD1 / BRANCH IF DIGIT COUNTER < 16 (NON ZERO)
OVR, BBL 0

10.18.6 Multi-Digit Subtraction

The carry bit may be used to add unsigned data quantities of arbitrary length.

Consider the following subtraction of two 4-digit hexadecimal numbers:

This subtraction may be performed by first setting the carry bit = 1. Then for each pair of digits, the program must
complement the carry bit and perform the subtraction. By this process, the carry bit will adjust the differences, taking
into account any borrows which may have occurred.

The process as applied to the above subtraction is as follows:
(1) Set carry bit =1
(2) Complement carry bit (carry is now 0)

(3) Subtract low order digits

A 1010
~6 1001
~carry 1
1 0100 = 0x04
carry

(4) Complement resulting carry bit (carry is now 0)

(5) Subtract next digits

10.18. Programming Techniques 143

Pyntel4004, Release ENV_VERSION

B 1010

~F 0000

~carry 1

0 1100
carry

0x0C

(6) Complement resulting carry bit (carry is now 1)

(7) Subtract next digits

4 0100

~4 1011

~carry 0

0 1111
carry

0xO0F

(8) Complement resulting carry bit (carry is now 1)

(9) Subtract next digits

5 0101

~1 1110

~carry 0

1 0011
carry

0x03

Thus, the correct result (0x3FC4) is obtained.

The following subroutine will perform a sixteen digit subtraction, making these assumptions:

* The two numbers to be subtracted are stored in DATA RAM chip 0, registers 0 and 1.

» Register 1 contains the subtrahend.

* The numbers are stored with the least significant digit first (in character 0) .

* The result will be stored least significant digit first in register 1 replacing the contents of register 1.

* Index register 8 will count the number of digits (up to 16) which have been subtracted.

SB, FIM 2P 0 / REG PAIR 2P RAM CHIP O OF REG 0

FIM 3P 16 / REG PAIR 3P RAM CHIP O OF REG 1

CLB / SET CARRY = 0

XCH 8 / SET DIGIT COUNTER = 0

STC / SET CARRY =1
SB1, CMC / COMPLEMENT CARRY BIT

SRC 2P / SELECT RAM REG 0

RDM / READ DIGIT TO ACCUMULATOR

SRC 3P / SELECT RAM REG 1

SBM / SUBTRACT DIGIT + CARRY FROM ACCUMULATOR

WRM / WRITE RESULT TO REG 1

(continues on next page)

144 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

(continued from previous page)

INC 5 / ADDRESS NEXT CHARACTER OF RAM REG 0

INC 7 / ADDRESS NEXT CHARACTER OF RAM REG 1

ISz 8 SBl1 / BRANCH IF DIGIT COUNTER < 16 (NON ZERO)
ov, BBL 0

When location “OV” is reached, RAM register 1 will contain the difference of the two 16 digit numbers arranged from
low order digit to high order digit.

Note: Carry Bit

The carry bit from the previous subtraction is complemented by the CMC instruction each time through the loop.

10.18.7 Decimal Addition

Each 4 bit data quantity may be treated as a decimal number as long as it represents one of the decimal digits from O
through 9, and does not contain any of the bit patterns representing the hexadecimal digits A through F.

In order to preserve this decimal interpretation when perfonning addition, the value 6 must be added to the accumulator
whenever an addition produces a result between 10 and 15. This is because each 4 bit data quantity can hold 6 more
combinations of bits than there are decimal digits.

The DAA (decimal adjust accumulator) instruction is provided for this purpose. Also, to permit addition of multi-digit
decimal numbers, the DAA adds 6 to the accumulator whenever the carry bit is set indicating a decimal carry from
previous additions. The carry bit is unaffected unless the addition of 6 produces a carry, in which case the carry bit is
set.

Example: Perform the decimal addition

469
329+

798

1 Clear the carry and add the lowest-order digits

9 =
9 -
Carry =

Result 0010
Carry 1

2 Perform a DAA operation, which will add 6 to the accumulator. Since no carry is produced by this operation, the
carry bit is left unaffected (i.e. 1)

Accumulator =
6 =

=

0
0

Carry

(continues on next page)

10.18. Programming Techniques 145

Pyntel4004, Release ENV_VERSION

(continued from previous page)

Result 1000=28
Carry 1

(since the DAA produced no carry, the bit is unaffected)

3 Add the next two digits

6 =
2 =
Carry =

0
0

S =

Result 1001=9
Carry 0

4 Perform a DAA operation. Since the accumulator is not greater than 9, and the carry is not set, then no action occurs.

5 Add the next two digits

0
0

(=

3 =
Carry =

Result 0111=7
Carry 0

6 Perform a DAA operation. Again, no action occurs. Thus, the correct result (798) is generated in three 4-bit data
characters.

Example Code (subroutine)

A subroutine which adds two 16 digit decimal numbers can be found here:

10.18.8 Decimal Subtraction

Each 4 bit data quantity may be treated as a decimal number as long as it represents one of the decimal digits O through
9. The TCS (transfer carry subtract) and DAA (decimal adjust accumulator) may be used to subtract two decimal
numbers and produce a decimal number. The TCS instruction permits subtraction of multi-digit decimal numbers.

The process consists of generating the ten’s complement of the subtrahend digit (the difference between the subtrahend
digit and 10 decimal), and adding the result to the minuend digit. For instance, to subtract 2 from 7, the ten’s complement
of 2 (10 - 2 = 8) is added to 7, producing 15 decimal which, when truncated to a 4 bit quantity gives 5 (the required
result). If a borrow was generated by the previous subtraction, the 9’s complement of the subtrahend digit is produced
to compensate for the borrow.

In detail, the procedure for subtracting one multi-digit decimal number from another is as follows:

1 Set the carry bit to 1 indicating no borrow.

2 Use the TCS instruction to set the accumulator to either 9 or 10 decimal.

3 Subtract the subtrahend digit from the accumulator, producing either the 9° s or 10’ s complement.

4 Set the carry bit to 0.

146 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

5 Add the minuend digit to the accumulator.

6 Use the DAA instruction to make sure the result in the accumulator is in decimal format, and to indicate a borrow in
the carry bit if one occurred.

7 Save this result.

8 If there are more digits to subtract, goto step 2, otherwise stop.

Example: Perform the decimal subtraction

51
38 -

13

1 Set the carry bit to 1
2 TCS sets accumulator = 1010b and carry = O

3 Subtract the subtrahend digit 8 from the accumulator

Accumulator = 1010
~ 8 = 0111

~ Carry = 1
Result 0010

4 Set the carry bitto 0

5 Add minuend digit 1 to accumulator

Accumulator = 0010

1 = 0111

Carry = 0

Result 0011
Carry 0

6 DAA leaves accumulator = 3 = first digit of result, and carry = 0, indicating that a borrow occurred
7 TCS sets accumulator =1001B and carry = 0

8 Subtract the subtrahend digit 3 from the accumulator

Accumulator = 1001
~ 3 = 1100

~ Carry = 1
Result 0110

9 Set carry =0

10 Add minuend digit 5 to accumulator

Accumulator =

0110
5 = 01 1

1
0

(continues on next page)

10.18. Programming Techniques 147

Pyntel4004, Release ENV_VERSION

(continued from previous page)

Carry = 0

Result 1011
Carry 0

11 DAA adds 6 to accumulator and sets carry = 1, indicating that no borrow occurred.

Accumulator = 1011

6 = 0110
Result 0001
Carry 1

Therefore the result of subtracting 38 from 51 is 13.

Example Code (subroutine)

The following subroutine will subtract one 16 digit decimal number from another, using the following assumptions.
* The minuend is stored least significant digit first in DATA RAM chip 0, register O.
* The subtrahend is stored least significant digit first in DATA RAM chip 0, register 1.
* The result will be stored least significant digit first in DATA RAM chip 0, register O replacing the minuend.

* Index register 8 will count the number of digits (up to 16) which have been subtracted.

SD, FIM 2P 0 / REG PAIR 2P = RAM CHIP 0, REG 0
FIM 3P 16 / REG PAIR 3P = RAM CHIP 0
CLB
XCH 8 / SET DIGIT COUNTER = 0
STC / SET CARRY = 1
SD1, TCS / ACCUMULATOR = 9 OR 10
SRC 3P / SELECT RAM REG 1
SBM / PRODUCE 9's OR 10's COMPLEMENT
CLC / SET CARRY = 0
SRC 2P / SELECT RAM REG 0
ADM / ADD MINUEND TO ACCUMULATOR
DAA / ADJUST ACCUMULATOR
WRM / WRITE RESULT TO REG 0
INC 5 / ADDRESS NEXT CHARACTER OF RAM REG 0
INC 7 / ADDRESS NEXT CHARACTER OF RAM REG 1
ISZ 8 SD1 / BRANCH IF DIGIT COUNTER < 16 (NON-ZERO)
DN BBL 0

148 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

Glossary

Term Definition
minuend The number that the subtrahend is being subtracted from
subtrahend | The number that is being subtracted

10.18.9 Floating Point Numbers

The structure of DATA RAM chips is fully described in Section 2.3.3.

One use to which a 16-character DATA RAM register and its 4 status characters can be put is to store a 16 digit decimal
floating point number.

Such a number can be represented in the form:

+ .DDDDDDDDDDDDDDDD * 10 * EE

The 16 data characters of a RAM register could then be used to store the digits of the number, two status characters
could be used to hold the digits of the exponent, while the remaining two status characters would hold the signs of the
number and its exponent.

If a value of one is chosen to represent minus and a value of zero is chosen to represent plus, status characters 0 and
1 hold the exponent digits, status character 2 holds the exponent sign and status character 3 holds the number’s sign,
then the number

+.1234567890812489 * 10 23

would appear in a RAM register as follows:

RAM Chip
RegisterO 11 J2 § 3145867189081 1j2p4 819123 1)1]o0
Register 1
Register 2
Register 3
6 A > J

Y
Data Characters Status Characters

This describes some techniques which may be of help to the programmer:

Crossing Page Boundaries Subroutines Branch Table Pseudosubroutines Logical Operations Floating
Point Numbers Crossing Page Boundaries Multi Digit Subtraction Decimal Addition Decimal Subtrac-
tion

10.18. Programming Techniques 149

Pyntel4004, Release ENV_VERSION

10.19 Powers Of Two

2" n 27

1 0 1.0

2 1 0.5

4 2 0.25

8 3] 0.125

16 4 0.062 5

32 5 | 0.03125

64 6 0.015 625

128 7 | 0.007 8125

256 8 0.003 906 25

512 9 | 0.001953 125

1024 10 | 0.000 976 562 5

2 048 11 | 0.000 488 281 25

4096 12 | 0.000 244 140 625

8192 13 | 0.000 122 070312 5

16 384 14 | 0.000 061 035 156 25

32768 15 | 0.000 030 517 578 125

65 536 16 | 0.000 015258 789 062 5

131 072 17 | 0.000 007 629 394 531 25

262 144 18 | 0.000 003 814 697 265 625

524 288 19 | 0.000 001 907 348 632 812 5

1048 576 20 | 0.000 000 953 674 316 406 25

2097 152 21 | 0.000 000 476 837 158 203 125

4194 304 22 | 0.000 000 238 418 579 101 562 5

8 388 608 23 | 0.000 000 119 209 289 550 781 25

16 777 216 24 | 0.000 000 059 604 644 775 390 625

33554432 25 | 0.000 000 029 802 322 387 695 312 5

67 108 864 26 | 0.000 000 014 901 161 193 847 656 25

134217 728 27 | 0.000 000 007 450 580 596 923 828 125

268 435 456 28 | 0.000 000 003 725 290 298 461 914 062 5

536 870912 29 | 0.000 000 001 862 645 149 230 957 031 25

1073 741 824 30 | 0.000 000 000 931 322 574 615 478 515 625

2 147 483 648 31 | 0.000 000 000 465 661 287 307 739 257 812 5

4294 967 296 32 | 0.000 000 000 232 830 643 653 869 628 906 25

8589 934 592 33 | 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 | 0.000 000 000 058 207 660 913 467 407 226 562 5

34359 738 368 35 | 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 | 0.000 000 000 014 551 915 228 366 851 806 640 625

137 438 953 472 37 | 0.000 000 000 007 275 957 614 183 425903 320 312 5
274 877 906 944 38 | 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 | 0.000 000 000 001 818 989 403 545 856 475 830 078 125
1099 511 627 776 40 | 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
2199 023 255 552 41 | 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25
4398 046 511 104 42 | 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
8796 093 022 208 43 | 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5
17 592 186 044 416 44 | 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25

continues on next page

150

Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

Table 3 - continued from previous page

2n

2»“

35184 372 088 832

45

0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125

70 368 744 177 664

6

0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5

140 737 488 355 328

47

0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25

281 474 976 710 656

48

0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625

562 949 953 421 312

49

0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5

1 125 899 906 842 624

50

0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25

2251799 813 685 248 51 | 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125

4503 599 627 370 496 52 | 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5

9007 199 254 740 992 53 | 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25

18 014 398 509 481 984 54 | 0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625

36 028 797 018 963 968 55 | 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5

72 057 594 037 927 936 56 | 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25

144 115 188 075 855 872 57 | 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125
288230376 151 711 744 58 | 0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5

576 460 752 303 423 488 59 | 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25

1 152 921 504 606 846 976 | 60 | 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
2305843 009 213 693 952 | 61 | 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
4611686 018427 387904 | 62 | 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25
9223 372 036 854 775 808 | 63 | 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125

10.20 Powers Of Sixteen

16" n 16 ™"

1 0 1.000 00000 00000 00000 x 10 °
16 1 0.625 00000 00000 00000 x 10 T
256 2 0.390 62500 00000 00000 x 10
4 096 3 0.244 14062 50000 00000 x 10
65 536 4 0.152 58789 06250 00000 x 10 *
1048 576 5 0.953 67431 64062 50000 x 10 °
16 777 216 6 0.596 04644 77539 06250 x 10 7
268 435 456 7 0.372 52902 98461 91406 x 10 %
4294 967 296 8 0.232 83064 36538 69628 x 10
68 719 476 736 9 0.145 51915 22836 68518 x 10 1°
1099 511 627 776 10 0.909 49470 17729 28237 x 10 2
17592186 044 416 | 11 0.568 43418 86080 80148 x 10 T°
281 474 976 710 | 12 0.355 27136 78800 50092 x 10 14
656

4 503 599 627 370 | 13 0.222 04460 49250 31308 x 10 1>
496

72 057 594 037 927 | 14 0.138 77787 80781 44567 x 10 1
936

1 152 921 504 606 | 15 0.867 36173 79884 03547 x 10 ™8
846 976

10.20. Powers Of Sixteen

151

Pyntel4004, Release ENV_VERSION

10.21 Powers Of 10 ¢

10" n 107"

1 0 1.0000 0000 0000 0000

A 1 0.1999 9999 9999 999A

64 2 0.28F5 C285 5C28 F5C3 x 16 !
3E8 3 0.4189 374B C6A7 EF9E x 16 2
2710 4 0.68DB 8BAC 710c b296 x 16

1 86A0 5 0.A7C5 AC47 1B47 8423 x 16
F 4240 6 0.10C6 F7A0 BSED 9D37 x 16 *
98 9680 7 0.1A07 F29A BCAF 4858 x 16
5F5 E100 8 0.2AF3 IDC4 6118 73BF x 16 ©
3B9A CA00 9 0.44B8 2FA0 9B5A 52CCx 16 7
2 540B E400 10 0.6DF3 7F67 5EF6 EADF x 16 ©
17 4876 E800 11 0.AFEB FFOB CB24 AAFF x 167
E8 D4A5 1000 12 0.1197 9981 2DEA 1119x 167
918 4E72 A000 13 0.1C25 C268 4976 81C2x 1610
5AF3 107A 4000 14 0.2D09 370D 4257 3604 x 16 11

3 8D7E A4C6 8000 | 15 0.480E BE7B 9D58 566D x 16 12
23 86F2 6FC1 0000 | 16 0.734A CASF 6226 FOAE x 16 13
163 4578 5D8A | 17 0.B877 AA32 36A4 B449 x 16 1
0000

DE0 B6B3 A764 | 18 0.1272 5DD1 D243 ABAl1 x 16 '
0000

8AC7 2304 89E8 | 19 0.1D83 C94F B6D2 AC35x 16 °
0000

10.22 Hexadecimal Decimal Integer Conversion

The table below provldes for direct conversions between hexadecimal integers in the range O-FFF and decimal integers
in the range 0-4095.

For conversion of larger integers, the table values may be added to the following figures:

Hex Decimal Hex Decimal
1 000 4096 20 000 131 072
2 000 8192 30 000 196 608
3000 12 288 40 000 262 144
4 000 16 384 50 000 327 680
5000 20480 60 000 393216
6 000 24 576 70 000 458 752
7 000 28 672 80 000 524 288
8 000 32768 90 000 589 824
9 000 36 864 A0 000 655 360
A 000 40 960 B0 000 720 896
B 000 45 056 C0 000 786 432

continues on next page

152 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

Table 4 — continued from previous page

Hex Decimal Hex Decimal
C 000 49 152 DO 000 851 968
D 000 53248 EO0 000 917 504
E 000 57 344 FO 000 983 040
F 000 61 440 100 000 1048 576
10 000 65 536 200 000 2097 152
11 000 69 632 300 000 3145728
12 000 73 728 400 000 4194 304
13 000 77 824 500 000 5242 880
14 000 81920 600 000 6291 456
15 000 86016 700 000 7 340 032
16 000 90112 800 000 8 388 608
17 000 94 208 900 000 9437 184
18 000 98 304 A00 000 10 485 760
19 000 102 400 B00 000 11 534 336
1A 000 106 496 C00 000 12 582912
1B 000 110 592 D00 000 13 631 408
1C 000 114 688 E00 000 14 680 064
1D 000 118 784 F00 000 15 728 640
1E 000 122 880 1 000 000 16 777 216
1F 000 126 976 2 000 000 33 554 432

0 1 2 3 4 5 6 7 8 9 A B C D E F
000 | 000 | 001 002 | 003 004 | 005 006 | 007 008 | 009 | 010 | 011 012 | 013 014 | 015
010 | 016 | 017 018 | 019 | 020 | 021 022 | 023 024 | 025 026 | 027 028 | 029 | 030 | 031
020 | 032 | 033 034 | 035 036 | 037 038 | 039 | 040 | 041 042 | 043 044 | 045 046 | 047
030 | 048 | 049 | 050 | 051 052 | 053 054 | 055 056 | 057 058 | 059 | 060 | 061 062 | 063
040 | 064 | 065 066 | 067 068 | 069 | 070 | 071 072 | 073 074 | 075 076 | 077 078 | 079
050 | 080 | 081 082 | 083 084 | 085 086 | 087 088 | 089 | 090 | 091 092 | 093 094 | 095
060 | 096 | 097 098 | 099 100 101 102 103 104 105 106 107 108 109 110 111
070 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
080 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
090 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
0AO0 | 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
0BO | 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
0C0 | 192 193 194 195 196 197 198 199 | 200 | 201 202 | 203 204 | 205 206 | 207
0DO | 208 209 | 210 | 211 212 | 213 214 | 215 216 | 217 218 219 | 220 | 221 222 | 223
0EO | 224 | 225 226 | 227 228 229 | 230 | 231 232 | 233 234 | 235 236 | 237 238 239
OF0 | 240 | 241 242 | 243 244 | 245 246 | 247 248 249 | 250 | 251 252 | 253 254 | 255
100 | 256 | 257 258 259 | 260 | 261 262 | 263 264 | 265 266 | 267 268 269 | 270 | 271
110 | 272 | 273 274 | 275 276 | 277 278 279 | 280 | 281 282 | 283 284 | 285 286 | 287
120 | 288 280 | 290 | 291 292 | 293 294 | 295 296 | 297 298 299 | 300 | 301 302 | 303
130 | 304 | 305 306 | 307 308 309 310 | 311 312 | 313 314 | 315 316 | 317 318 319
140 | 320 | 321 322 | 323 324 | 325 326 | 327 328 329 | 330 | 331 332 | 333 334 | 335
150 | 336 | 337 338 339 340 | 341 342 | 343 344 | 345 346 | 347 348 349 | 350 | 351
160 | 352 | 353 354 | 355 356 | 357 358 359 | 360 | 361 362 | 363 364 | 365 366 | 367
170 | 368 369 370 | 371 372 | 373 374 | 375 376 | 377 378 379 380 | 381 382 | 383
180 | 384 | 385 386 | 387 388 380 | 390 | 391 392 | 393 394 | 395 396 | 397 398 399
190 | 400 | 401 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 412 | 413 | 414 | 415

continues on next page

10.22. Hexadecimal Decimal Integer Conversion

153

Pyntel4004, Release ENV_VERSION

Table 5 — continued from previous page

0 1 2 3 4 5 6 7 8 9 A B C D E F

1A0 | 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
1BO | 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
1CO | 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
IDO | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 | 476 | 477 | 478 | 479
1EO | 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
IFO | 496 | 497 | 498 | 499 | 500 | 501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 | 511
200 | 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
210 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543
220 | 544 | 545 | 546 | 547 | 548 | 549 | 550 | 551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 | 559
230 | 560 | 561 | 562 | 563 | 564 | 565 | 566 | 567 | 568 | 569 | 570 | 571 | 572 | 573 | 574 | 575
240 | 576 | 577 | 578 | 579 | 580 | 581 | 582 | 583 | 584 | 585 | 586 | 587 | 588 | 589 | 590 | 591
250 | 592 | 593 | 594 | 595 |596 | 597 | 598 |599 | 600 | 601 | 602 | 603 | 604 | 605 | 606 | 607
260 | 608 | 609 | 610 | 611 | 612 | 613 | 614 | 615 | 616 | 617 | 618 | 619 | 620 | 621 | 622 | 623
270 | 624 | 625 | 626 | 627 | 628 | 629 | 630 | 631 | 632 | 633 | 634 | 635 | 636 | 637 | 638 | 639
280 | 640 | 641 | 642 | 643 | 644 | 645 | 646 | 647 | 648 | 649 | 650 | 651 | 652 | 653 | 654 | 655
290 | 656 | 657 | 658 | 659 | 660 | 661 | 662 | 663 | 664 | 665 | 666 | 667 | 668 | 669 | 670 | 671
2A0 | 672 | 673 | 674 | 675 | 676 | 677 | 678 | 679 | 680 | 681 | 682 | 683 | 684 | 685 | 686 | 687
2B0 | 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
2C0 | 704 | 705 | 706 | 707 | 708 | 709 | 710 | 711 | 712 | 713 | 714 | 715 | 716 | 717 | 718 | 719
2D0 | 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
2B0 | 736 | 737 | 738 | 739 | 740 | 741 | 742 | 743 | 744 | 745 | 746 | 747 | 748 | 749 | 750 | 751
2F0 | 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
300 | 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
310 | 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
320 | 800 | 801 | 802 | 803 | 804 | 805 | 806 | 807 | 808 | 809 | 810 | 811 | 812 | 813 | 814 | 815
330 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
340 | 832 | 833 | 834 | 835 |836 | 837 | 838 |839 | 840 | 841 | 842 | 843 | 844 | 845 | 846 | 847
350 | 848 | 849 | 850 | 851 | 852 | 853 | 854 |855 | 856 | 857 |88 |859 | 80 |81 | 862 | 863
360 | 864 | 865 | 866 | 867 | 868 | 869 | 870 | 871 | 872 | 873 | 874 | 875 | 876 | 877 | 818 | 879
370 | 880 | 881 | 882 | 883 | 834 | 885 | 886 | 837 | 838 |89 |80 |81 | 892 | 893 | 894 | 895
380 | 896 | 897 | 898 | 899 | 900 | 901 | 902 | 903 |904 | 905 | 906 | 907 | 908 | 909 | 910 | 911
390 | 912 | 913 | 914 | 915 | 916 | 917 | 918 | 919 | 920 | 921 | 922 | 923 | 924 | 925 | 926 | 927
3A0 | 928 | 929 | 930 | 931 |932 |[933 | 934 | 935 |936 | 937 | 938 |939 | 940 | 941 | 942 | 943
3B0 | 944 | 945 | 946 | 947 | 948 | 949 | 950 | 951 | 952 | 953 | 954 | 955 | 956 | 957 | 958 | 959
3CO | 960 | 961 | 962 | 963 | 964 | 965 | 966 | 967 | 968 | 969 | 970 | 971 | 972 | 973 | 974 | 975
3D0 | 976 | 977 | 978 | 979 | 980 | 981 | 982 | 983 | 984 | 985 | 986 | 987 | 988 | 989 | 990 | 991
3E0 | 992 993 994 995 996 997 998 999 1000 | 1001 | 1002 | 1003 | 1004 | 1005 | 1006 | 100’
3F0 1008 | 1009 | 1010 | 1011 | 1012 | 1013 | 1014 | 1015 | 1016 | 1017 | 1018 | 1019 | 1020 | 1021 | 1022 | 102:
400 1024 | 1025 | 1026 | 1027 | 1028 | 1029 | 1030 | 1031 | 1032 | 1033 | 1034 | 1035 | 1036 | 1037 | 1038 | 103¢
410 1040 | 1041 | 1042 | 1043 | 1044 | 1045 | 1046 | 1047 | 1048 | 1049 | 1050 | 1051 | 1052 | 1053 | 1054 | 105¢
420 1056 | 1057 | 1058 | 1059 | 1060 | 1061 | 1062 | 1063 | 1064 | 1065 | 1066 | 1067 | 1068 | 1069 | 1070 | 1071
430 | 1072 | 1073 | 1074 | 1075 | 1076 | 1077 | 1078 | 1079 | 1080 | 1081 | 1082 | 1083 | 1084 | 1085 | 1086 | 108’
440 1088 | 1089 | 1090 | 1091 | 1092 | 1093 | 1094 | 1095 | 1096 | 1097 | 1098 | 1099 | 1100 | 1101 | 1102 | 110z:
450 1104 | 1105 | 1106 | 1107 | 1108 | 1109 | 1110 | 1111 | 1112 | 1113 | 1114 | 1115 | 1116 | 1117 | 1118 | 111¢
460 1120 | 1121 | 1122 | 1123 | 1124 | 1125 | 1126 | 1127 | 1128 | 1129 | 1130 | 1131 | 1132 | 1133 | 1134 | 113¢
470 1136 | 1137 | 1138 | 1139 | 1140 | 1141 | 1142 | 1143 | 1144 | 1145 | 1146 | 1147 | 1148 | 1149 | 1150 | 1151
480 1152 | 1153 | 1154 | 1155 | 1156 | 1157 | 1158 | 1159 | 1160 | 1161 | 1162 | 1163 | 1164 | 1165 | 1166 | 116’
490 1168 | 1169 | 1170 | 1171 | 1172 | 1173 | 1174 | 1175 | 1176 | 1177 | 1178 | 1179 | 1180 | 1181 | 1182 | 118
4A0 | 1184 | 1185 | 1186 | 1187 | 1188 | 1189 | 1190 | 1191 | 1192 | 1193 | 1194 | 1195 | 1196 | 1197 | 1198 | 119¢

continues on next page

154 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

Table 5 — continued from previous page

0 1 2 3 4 5 6 7 8 9 A B C D E F

4B0 | 1200 | 1201 | 1202 | 1203 | 1204 | 1205 | 1206 | 1207 | 1208 | 1209 | 1210 | 1211 | 1212 | 1213 | 1214 | 121}
4C0 | 1216 | 1217 | 1218 | 1219 | 1220 | 1221 | 1222 | 1223 | 1224 | 1225 | 1226 | 1227 | 1228 | 1229 | 1230 | 123]
4D0 | 1232 | 1233 | 1234 | 1235 | 1236 | 1237 | 1238 | 1239 | 1240 | 1241 | 1242 | 1243 | 1244 | 1245 | 1246 | 1247
4E0 | 1248 | 1249 | 1250 | 1251 | 1252 | 1253 | 1254 | 1255 | 1256 | 1257 | 1258 | 1259 | 1260 | 1261 | 1262 | 126
4F0 1264 | 1265 | 1266 | 1267 | 1268 | 1269 | 1270 | 1271 | 1272 | 1273 | 1274 | 1275 | 1276 | 1277 | 1278 | 127¢
500 1280 | 1281 | 1282 | 1283 | 1284 | 1285 | 1286 | 1287 | 1288 | 1289 | 1290 | 1291 | 1292 | 1293 | 1294 | 129
510 1296 | 1297 | 1298 | 1299 | 1300 | 1301 | 1302 | 1303 | 1304 | 1305 | 1306 | 1307 | 1308 | 1309 | 1310 | 1311
520 1312 | 1313 | 1314 | 1315 | 1316 | 1317 | 1318 | 1319 | 1320 | 1321 | 1322 | 1323 | 1324 | 1325 | 1326 | 132]
530 | 1328 | 1329 | 1330 | 1331 | 1332 | 1333 | 1334 | 1335 | 1336 | 1337 | 1338 | 1339 | 1340 | 1341 | 1342 | 134:
540 | 1344 | 1345 | 1346 | 1347 | 1348 | 1349 | 1350 | 1351 | 1352 | 1353 | 1354 | 1355 | 1356 | 1357 | 1358 | 135¢
550 | 1360 | 1361 | 1362 | 1363 | 1364 | 1365 | 1366 | 1367 | 1368 | 1369 | 1370 | 1371 | 1372 | 1373 | 1374 | 137:
560 | 1376 | 1377 | 1378 | 1379 | 1380 | 1381 | 1382 | 1383 | 1384 | 1385 | 1386 | 1387 | 1388 | 1389 | 1390 | 1391
570 | 1392 | 1393 | 1394 | 1395 | 1396 | 1397 | 1398 | 1399 | 1400 | 1401 | 1402 | 1403 | 1404 | 1405 | 1406 | 140
580 1408 | 1409 | 1410 | 1411 | 1412 | 1413 | 1414 | 1415 | 1416 | 1417 | 1418 | 1419 | 1420 | 1421 | 1422 | 142:
590 | 1424 | 1425 | 1426 | 1427 | 1428 | 1429 | 1430 | 1431 | 1432 | 1433 | 1434 | 1435 | 1436 | 1437 | 1438 | 143¢
SAO0 | 1440 | 1441 | 1442 | 1443 | 1444 | 1445 | 1446 | 1447 | 1448 | 1449 | 1450 | 1451 | 1452 | 1453 | 1454 | 145:
5BO | 1456 | 1457 | 1458 | 1459 | 1460 | 1461 | 1462 | 1463 | 1464 | 1465 | 1466 | 1467 | 1468 | 1469 | 1470 | 147
5CO | 1472 | 1473 | 1474 | 1475 | 1476 | 1477 | 1478 | 1479 | 1480 | 1481 | 1482 | 1483 | 1484 | 1485 | 1486 | 14%
5DO | 1488 | 1489 | 1490 | 1491 | 1492 | 1493 | 1494 | 1495 | 1496 | 1497 | 1498 | 1499 | 1500 | 1501 | 1502 | 150
SEO0 | 1504 | 1505 | 1506 | 1507 | 1508 | 1509 | 1510 | 1511 | 1512 | 1513 | 1514 | 1515 | 1516 | 1517 | 1518 | 151¢
5F0 | 1520 | 1521 | 1522 | 1523 | 1524 | 1525 | 1526 | 1527 | 1528 | 1529 | 1530 | 1531 | 1532 | 1533 | 1534 | 153:
600 1536 | 1537 | 1538 | 1539 | 1540 | 1541 | 1542 | 1543 | 1544 | 1545 | 1546 | 1547 | 1548 | 1549 | 1550 | 1551
610 | 1552 | 1553 | 1554 | 1555 | 1556 | 1557 | 1558 | 1559 | 1560 | 1561 | 1562 | 1563 | 1564 | 1565 | 1566 | 156
620 1568 | 1569 | 1570 | 1571 | 1572 | 1573 | 1574 | 1575 | 1576 | 1577 | 1578 | 1579 | 1580 | 1581 | 1582 | 158:
630 | 1584 | 1585 | 1586 | 1587 | 1588 | 1589 | 1590 | 1591 | 1592 | 1593 | 1594 | 1595 | 1596 | 1597 | 1598 | 159¢
640 1600 | 1601 | 1602 | 1603 | 1604 | 1605 | 1606 | 1607 | 1608 | 1609 | 1610 | 1611 | 1612 | 1613 | 1614 | 161
650 1616 | 1617 | 1618 | 1619 | 1620 | 1621 | 1622 | 1623 | 1624 | 1625 | 1626 | 1627 | 1628 | 1629 | 1630 | 163]
660 | 1632 | 1633 | 1634 | 1635 | 1636 | 1637 | 1638 | 1639 | 1640 | 1641 | 1642 | 1643 | 1644 | 1645 | 1646 | 1647
670 | 1648 | 1649 | 1650 | 1651 | 1652 | 1653 | 1654 | 1655 | 1656 | 1657 | 1658 | 1659 | 1660 | 1661 | 1662 | 166:
680 | 1664 | 1665 | 1666 | 1667 | 1668 | 1669 | 1670 | 1671 | 1672 | 1673 | 1674 | 1675 | 1676 | 1677 | 1678 | 167¢
690 | 1680 | 1681 | 1682 | 1683 | 1684 | 1685 | 1686 | 1687 | 1688 | 1689 | 1690 | 1691 | 1692 | 1693 | 1694 | 169:
6A0 | 1696 | 1697 | 1698 | 1699 | 1700 | 1701 | 1702 | 1703 | 1704 | 1705 | 1706 | 1707 | 1708 | 1709 | 1710 | 171
6B0 | 1712 | 1713 | 1714 | 1715 | 1716 | 1717 | 1718 | 1719 | 1720 | 1721 | 1722 | 1723 | 1724 | 1725 | 1726 | 172
6CO | 1728 | 1729 | 1730 | 1731 | 1732 | 1733 | 1734 | 1735 | 1736 | 1737 | 1738 | 1739 | 1740 | 1741 | 1742 | 174
6D0 | 1744 | 1745 | 1746 | 1747 | 1748 | 1749 | 1750 | 1751 | 1752 | 1753 | 1754 | 1755 | 1756 | 1757 | 1758 | 175¢
6E0 | 1760 | 1761 | 1762 | 1763 | 1764 | 1765 | 1766 | 1767 | 1768 | 1769 | 1770 | 1771 | 1772 | 1773 | 1774 | 177:
6F0 1776 | 1777 | 1778 | 1779 | 1780 | 1781 | 1782 | 1783 | 1784 | 1785 | 1786 | 1787 | 1788 | 1789 | 1790 | 1791
700 | 1792 | 1793 | 1794 | 1795 | 1796 | 1797 | 1798 | 1799 | 1800 | 1801 | 1802 | 1803 | 1804 | 1805 | 1806 | 180"
710 1808 | 1809 | 1810 | 1811 | 1812 | 1813 | 1814 | 1815 | 1816 | 1817 | 1818 | 1819 | 1820 | 1821 | 1822 | 182:
720 | 1824 | 1825 | 1826 | 1827 | 1828 | 1829 | 1830 | 1831 | 1832 | 1833 | 1834 | 1835 | 1836 | 1837 | 1838 | 183¢
730 1840 | 1841 | 1842 | 1843 | 1844 | 1845 | 1846 | 1847 | 1848 | 1849 | 1850 | 1851 | 1852 | 1853 | 1854 | 185:
740 | 1856 | 1857 | 1858 | 1859 | 1860 | 1861 | 1862 | 1863 | 1864 | 1865 | 1866 | 1867 | 1868 | 1869 | 1870 | 1871
750 1872 | 1873 | 1874 | 1875 | 1876 | 1877 | 1878 | 1879 | 1880 | 1881 | 1882 | 1883 | 1884 | 1885 | 1886 | 188"
760 | 1888 | 1889 | 1890 | 1891 | 1892 | 1893 | 1894 | 1895 | 1896 | 1897 | 1898 | 1899 | 1900 | 1901 | 1902 | 190:
770 1904 | 1905 | 1906 | 1907 | 1908 | 1909 | 1910 | 1911 | 1912 | 1913 | 1914 | 1915 | 1916 | 1917 | 1918 | 191¢
780 | 1920 | 1921 | 1922 | 1923 | 1924 | 1925 | 1926 | 1927 | 1928 | 1929 | 1930 | 1931 | 1932 | 1933 | 1934 | 193:
790 1936 | 1937 | 1938 | 1939 | 1940 | 1941 | 1942 | 1943 | 1944 | 1945 | 1946 | 1947 | 1948 | 1949 | 1950 | 195]
7A0 | 1952 | 1953 | 1954 | 1955 | 1956 | 1957 | 1958 | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 196
7BO | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 198:

continues on next page

10.22. Hexadecimal Decimal Integer Conversion 155

Pyntel4004, Release ENV_VERSION

Table 5 — continued from previous page

0 1 2 3 4 5 6 7 8 9 A B C D E F
7C0O | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 199¢
7D0 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 201:
7E0 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 203!
7F0 | 2032 | 2033 | 2034 | 2035 | 2036 | 2037 | 2038 | 2039 | 2040 | 2041 | 2042 | 2043 | 2044 | 2045 | 2046 | 204
800 | 2048 | 2049 | 2050 | 2051 | 2052 | 2053 | 2054 | 2055 | 2056 | 2057 | 2058 | 2059 | 2060 | 2061 | 2062 | 206:
810 | 2064 | 2065 | 2066 | 2067 | 2068 | 2069 | 2070 | 2071 | 2072 | 2073 | 2074 | 2075 | 2076 | 2077 | 2078 | 207¢
820 | 2080 | 2081 | 2082 | 2083 | 2084 | 2085 | 2086 | 2087 | 2088 | 2089 | 2090 | 2091 | 2092 | 2093 | 2094 | 209:
830 | 2096 | 2097 | 2098 | 2099 | 2100 | 2101 | 2102 | 2103 | 2104 | 2105 | 2106 | 2107 | 2108 | 2109 | 2110 | 2111
840 | 2112 | 2113 | 2114 | 2115 | 2116 | 2117 | 2118 | 2119 | 2120 | 2121 | 2122 | 2123 | 2124 | 2125 | 2126 | 212’
850 | 2128 | 2129 | 2130 | 2131 | 2132 | 2133 | 2134 | 2135 | 2136 | 2137 | 2138 | 2139 | 2140 | 2141 | 2142 | 214
860 | 2144 | 2145 | 2146 | 2147 | 2148 | 2149 | 2150 | 2151 | 2152 | 2153 | 2154 | 2155 | 2156 | 2157 | 2158 | 215¢
870 | 2160 | 2161 | 2162 | 2163 | 2164 | 2165 | 2166 | 2167 | 2168 | 2169 | 2170 | 2171 | 2172 | 2173 | 2174 | 217
880 | 2176 | 2177 | 2178 | 2179 | 2180 | 2181 | 2182 | 2183 | 2184 | 2185 | 2186 | 2187 | 2188 | 2189 | 2190 | 2191
890 | 2192 | 2193 | 2194 | 2195 | 2196 | 2197 | 2198 | 2199 | 2200 | 2201 | 2202 | 2203 | 2204 | 2205 | 2206 | 220"
8AOQ | 2208 | 2209 | 2210 | 2211 | 2212 | 2213 | 2214 | 2215 | 2216 | 2217 | 2218 | 2219 | 2220 | 2221 | 2222 | 222:
8BO | 2224 | 2225 | 2226 | 2227 | 2228 | 2229 | 2230 | 2231 | 2232 | 2233 | 2234 | 2235 | 2236 | 2237 | 2238 | 223¢
8CO | 2240 | 2241 | 2242 | 2243 | 2244 | 2245 | 2246 | 2247 | 2248 | 2249 | 2250 | 2251 | 2252 | 2253 | 2254 | 225
8D0 | 2256 | 2257 | 2258 | 2259 | 2260 | 2261 | 2262 | 2263 | 2264 | 2265 | 2266 | 2267 | 2268 | 2269 | 2270 | 2271
8EO | 2272 | 2273 | 2274 | 2275 | 2276 | 2277 | 2278 | 2279 | 2280 | 2281 | 2282 | 2283 | 2284 | 2285 | 2286 | 228"
8F0 | 2288 | 2289 | 2290 | 2291 | 2292 | 2293 | 2294 | 2295 | 2296 | 2297 | 2298 | 2299 | 2300 | 2301 | 2302 | 230z
900 | 2304 | 2305 | 2306 | 2307 | 2308 | 2309 | 2310 | 2311 | 2312 | 2313 | 2314 | 2315 | 2316 | 2317 | 2318 | 231¢
910 | 2320 | 2321 | 2322 | 2323 | 2324 | 2325 | 2326 | 2327 | 2328 | 2329 | 2330 | 2331 | 2332 | 2333 | 2334 | 233:
920 | 2336 | 2337 | 2338 | 2339 | 2340 | 2341 | 2342 | 2343 | 2344 | 2345 | 2346 | 2347 | 2348 | 2349 | 2350 | 235]
930 | 2352 | 2353 | 2354 | 2355 | 2356 | 2357 | 2358 | 2359 | 2360 | 2361 | 2362 | 2363 | 2364 | 2365 | 2366 | 236
940 | 2368 | 2369 | 2370 | 2371 | 2372 | 2373 | 2374 | 2375 | 2376 | 2377 | 2378 | 2379 | 2380 | 2381 | 2382 | 23&:
950 | 2384 | 2385 | 2386 | 2387 | 2388 | 2389 | 2390 | 2391 | 2392 | 2393 | 2394 | 2395 | 2396 | 2397 | 2398 | 239¢
960 | 2400 | 2401 | 2402 | 2403 | 2404 | 2405 | 2406 | 2407 | 2408 | 2409 | 2410 | 2411 | 2412 | 2413 | 2414 | 241:
970 | 2416 | 2417 | 2418 | 2419 | 2420 | 2421 | 2422 | 2423 | 2424 | 2425 | 2426 | 2427 | 2428 | 2429 | 2430 | 243!
980 | 2432 | 2433 | 2434 | 2435 | 2436 | 2437 | 2438 | 2439 | 2440 | 2441 | 2442 | 2443 | 2444 | 2445 | 2446 | 244
990 | 2448 | 2449 | 2450 | 2451 | 2452 | 2453 | 2454 | 2455 | 2456 | 2457 | 2458 | 2459 | 2460 | 2461 | 2462 | 246:
9A0 | 2464 | 2465 | 2466 | 2467 | 2468 | 2469 | 2470 | 2471 | 2472 | 2473 | 2474 | 2475 | 2476 | 2477 | 2478 | 24¢
9BO | 2480 | 2481 | 2482 | 2483 | 2484 | 2485 | 2486 | 2487 | 2488 | 2489 | 2490 | 2491 | 2492 | 2493 | 2494 | 249:
9CO | 2496 | 2497 | 2498 | 2499 | 2500 | 2501 | 2502 | 2503 | 2504 | 2505 | 2506 | 2507 | 2508 | 2509 | 2510 | 2511
9D0 | 2512 | 2513 | 2514 | 2515 | 2516 | 2517 | 2518 | 2519 | 2520 | 2521 | 2522 | 2523 | 2524 | 2525 | 2526 | 252’
9E0 | 2528 | 2529 | 2530 | 2531 | 2532 | 2533 | 2534 | 2535 | 2536 | 2537 | 2538 | 2539 | 2540 | 2541 | 2542 | 254:
OF0 | 2544 | 2545 | 2546 | 2547 | 2548 | 2549 | 2550 | 2551 | 2552 | 2553 | 2554 | 2555 | 2556 | 2557 | 2558 | 255¢
A00 | 2560 | 2561 | 2562 | 2563 | 2564 | 2565 | 2566 | 2567 | 2568 | 2569 | 2570 | 2571 | 2572 | 2573 | 2574 | 257¢
Al10 | 2576 | 2577 | 2578 | 2579 | 2580 | 2581 | 2582 | 2583 | 2584 | 2585 | 2586 | 2587 | 2588 | 2589 | 2590 | 2591
A20 | 2592 | 2593 | 2594 | 2595 | 2596 | 2597 | 2598 | 2599 | 2600 | 2601 | 2602 | 2603 | 2604 | 2605 | 2606 | 260’
A30 | 2608 | 2609 | 2610 | 2611 | 2612 | 2613 | 2614 | 2615 | 2616 | 2617 | 2618 | 2619 | 2620 | 2621 | 2622 | 262:
A40 | 2624 | 2625 | 2626 | 2627 | 2628 | 2629 | 2630 | 2631 | 2632 | 2633 | 2634 | 2635 | 2636 | 2637 | 2638 | 263¢
A50 | 2640 | 2641 | 2642 | 2643 | 2644 | 2645 | 2646 | 2647 | 2648 | 2649 | 2650 | 2651 | 2652 | 2653 | 2654 | 265:
A60 | 2656 | 2657 | 2658 | 2659 | 2660 | 2661 | 2662 | 2663 | 2664 | 2665 | 2666 | 2667 | 2668 | 2669 | 2670 | 2671
AT0 | 2672 | 2673 | 2674 | 2675 | 2676 | 2677 | 2678 | 2679 | 2680 | 2681 | 2682 | 2683 | 2684 | 2685 | 2686 | 268’
A80 | 2688 | 2689 | 2690 | 2691 | 2692 | 2693 | 2694 | 2695 | 2696 | 2697 | 2698 | 2699 | 2700 | 2701 | 2702 | 270:
A90 | 2704 | 2705 | 2706 | 2707 | 2708 | 2709 | 2710 | 2711 | 2712 | 2713 | 2714 | 2715 | 2716 | 2717 | 2718 | 271¢
AAOQ | 2720 | 2721 | 2722 | 2723 | 2724 | 2725 | 2726 | 2727 | 2728 | 2729 | 2730 | 2731 | 2732 | 2733 | 2734 | 273}
ABO | 2736 | 2737 | 2738 | 2739 | 2740 | 2741 | 2742 | 2743 | 2744 | 2745 | 2746 | 2747 | 2748 | 2749 | 2750 | 275]
ACO | 2752 | 2753 | 2754 | 2755 | 2756 | 2757 | 2758 | 2759 | 2760 | 2761 | 2762 | 2763 | 2764 | 2765 | 2766 | 276

continues on next page
156 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

Table 5 — continued from previous page

0 1 2 3 4 5 6 7 8 9 A B C D E F

ADO | 2768 | 2769 | 2770 | 2771 | 2772 | 2773 | 2774 | 2775 | 2776 | 2777 | 2778 | 2779 | 2780 | 2781 | 2782 | 278
AEQ | 2784 | 2785 | 2786 | 2787 | 2788 | 2789 | 2790 | 2791 | 2792 | 2793 | 2794 | 2795 | 2796 | 2797 | 2798 | 279¢
AFO0 | 2800 | 2801 | 2802 | 2803 | 2804 | 2805 | 2806 | 2807 | 2808 | 2809 | 2810 | 2811 | 2812 | 2813 | 2814 | 281
BOO | 2816 | 2817 | 2818 | 2819 | 2820 | 2821 | 2822 | 2823 | 2824 | 2825 | 2826 | 2827 | 2828 | 2829 | 2830 | 283]
B10 | 2832 | 2833 | 2834 | 2835 | 2836 | 2837 | 2838 | 2839 | 2840 | 2841 | 2842 | 2843 | 2844 | 2845 | 2846 | 284
B20 | 2848 | 2849 | 2850 | 2851 | 2852 | 2853 | 2854 | 2855 | 2856 | 2857 | 2858 | 2859 | 2860 | 2861 | 2862 | 286:
B30 | 2864 | 2865 | 2866 | 2867 | 2868 | 2869 | 2870 | 2871 | 2872 | 2873 | 2874 | 2875 | 2876 | 2877 | 2878 | 287¢
B40 | 2880 | 2881 | 2882 | 2883 | 2884 | 2885 | 2886 | 2887 | 2888 | 2889 | 2890 | 2891 | 2892 | 2893 | 2894 | 289:
B50 | 2896 | 2897 | 2898 | 2899 | 2900 | 2901 | 2902 | 2903 | 2904 | 2905 | 2906 | 2907 | 2908 | 2909 | 2910 | 2911
B60 | 2912 | 2913 | 2914 | 2915 | 2916 | 2917 | 2918 | 2919 | 2920 | 2921 | 2922 | 2923 | 2924 | 2925 | 2926 | 292]
B70 | 2928 | 2929 | 2930 | 2931 | 2932 | 2933 | 2934 | 2935 | 2936 | 2937 | 2938 | 2939 | 2940 | 2941 | 2942 | 294
B80 | 2944 | 2945 | 2946 | 2947 | 2948 | 2949 | 2950 | 2951 | 2952 | 2953 | 2954 | 2955 | 2956 | 2957 | 2958 | 295¢
B90 | 2960 | 2961 | 2962 | 2963 | 2964 | 2965 | 2966 | 2967 | 2968 | 2969 | 2970 | 2971 | 2972 | 2973 | 2974 | 297:
BAO | 2976 | 2977 | 2978 | 2979 | 2980 | 2981 | 2982 | 2983 | 2984 | 2985 | 2986 | 2987 | 2988 | 2989 | 2990 | 2991
BBO | 2992 | 2993 | 2994 | 2995 | 2996 | 2997 | 2998 | 2999 | 3000 | 3001 | 3002 | 3003 | 3004 | 3005 | 3006 | 300
BCO | 3008 | 3009 | 3010 | 3011 | 3012 | 3013 | 3014 | 3015 | 3016 | 3017 | 3018 | 3019 | 3020 | 3021 | 3022 | 302
BDO | 3024 | 3025 | 3026 | 3027 | 3028 | 3029 | 3030 | 3031 | 3032 | 3033 | 3034 | 3035 | 3036 | 3037 | 3038 | 303¢
BEO | 3040 | 3041 | 3042 | 3043 | 3044 | 3045 | 3046 | 3047 | 3048 | 3049 | 3050 | 3051 | 3052 | 3053 | 3054 | 3059
BFO | 3056 | 3057 | 3058 | 3059 | 3060 | 3061 | 3062 | 3063 | 3064 | 3065 | 3066 | 3067 | 3068 | 3069 | 3070 | 3071
CO00 | 3072 | 3073 | 3074 | 3075 | 3076 | 3077 | 3078 | 3079 | 3080 | 3081 | 3082 | 3083 | 3084 | 3085 | 3086 | 308
C10 | 3088 | 3089 | 3090 | 3091 | 3092 | 3093 | 3094 | 3095 | 3096 | 3097 | 3098 | 3099 | 3100 | 3101 | 3102 | 310:
C20 | 3104 | 3105 | 3106 | 3107 | 3108 | 3109 | 3110 | 3111 | 3112 | 3113 | 3114 | 3115 | 3116 | 3117 | 3118 | 311¢
C30 | 3120 | 3121 | 3122 | 3123 | 3124 | 3125 | 3126 | 3127 | 3128 | 3129 | 3130 | 3131 | 3132 | 3133 | 3134 | 313:
C40 | 3136 | 3137 | 3138 | 3139 | 3140 | 3141 | 3142 | 3143 | 3144 | 3145 | 3146 | 3147 | 3148 | 3149 | 3150 | 315!
C50 | 3152 | 3153 | 3154 | 3155 | 3156 | 3157 | 3158 | 3159 | 3160 | 3161 | 3162 | 3163 | 3164 | 3165 | 3166 | 316
C60 | 3168 | 3169 | 3170 | 3171 | 3172 | 3173 | 3174 | 3175 | 3176 | 3177 | 3178 | 3179 | 3180 | 3181 | 3182 | 318&:
C70 | 3184 | 3185 | 3186 | 3187 | 3188 | 3189 | 3190 | 3191 | 3192 | 3193 | 3194 | 3195 | 3196 | 3197 | 3198 | 319¢
C80 | 3200 | 3201 | 3202 | 3203 | 3204 | 3205 | 3206 | 3207 | 3208 | 3209 | 3210 | 3211 | 3212 | 3213 | 3214 | 321
C90 | 3216 | 3217 | 3218 | 3219 | 3220 | 3221 | 3222 | 3223 | 3224 | 3225 | 3226 | 3227 | 3228 | 3229 | 3230 | 323!
CAO | 3232 | 3233 | 3234 | 3235 | 3236 | 3237 | 3238 | 3239 | 3240 | 3241 | 3242 | 3243 | 3244 | 3245 | 3246 | 324"
CBO | 3248 | 3249 | 3250 | 3251 | 3252 | 3253 | 3254 | 3255 | 3256 | 3257 | 3258 | 3259 | 3260 | 3261 | 3262 | 326:
CCO | 3264 | 3265 | 3266 | 3267 | 3268 | 3269 | 3270 | 3271 | 3272 | 3273 | 3274 | 3275 | 3276 | 3277 | 3278 | 327¢
CDO | 3280 | 3281 | 3282 | 3283 | 3284 | 3285 | 3286 | 3287 | 3288 | 3289 | 3290 | 3291 | 3292 | 3293 | 3294 | 329:
CEO | 3296 | 3297 | 3298 | 3299 | 3300 | 3301 | 3302 | 3303 | 3304 | 3305 | 3306 | 3307 | 3308 | 3309 | 3310 | 3311
CFO | 3312 | 3313 | 3314 | 3315 | 3316 | 3317 | 3318 | 3319 | 3320 | 3321 | 3322 | 3323 | 3324 | 3325 | 3326 | 332
D00 | 3328 | 3329 | 3330 | 3331 | 3332 | 3333 | 3334 | 3335 | 3336 | 3337 | 3338 | 3339 | 3340 | 3341 | 3342 | 334
D10 | 3344 | 3345 | 3346 | 3347 | 3348 | 3349 | 3350 | 3351 | 3352 | 3353 | 3354 | 3355 | 3356 | 3357 | 3358 | 335¢
D20 | 3360 | 3361 | 3362 | 3363 | 3364 | 3365 | 3366 | 3367 | 3368 | 3369 | 3370 | 3371 | 3372 | 3373 | 3374 | 337:
D30 | 3376 | 3377 | 3378 | 3379 | 3380 | 3381 | 3382 | 3383 | 3384 | 3385 | 3386 | 3387 | 3388 | 3389 | 3390 | 339]
D40 | 3392 | 3393 | 3394 | 3395 | 3396 | 3397 | 3398 | 3399 | 3400 | 3401 | 3402 | 3403 | 3404 | 3405 | 3406 | 340
D50 | 3408 | 3409 | 3410 | 3411 | 3412 | 3413 | 3414 | 3415 | 3416 | 3417 | 3418 | 3419 | 3420 | 3421 | 3422 | 342:
D60 | 3424 | 3425 | 3426 | 3427 | 3428 | 3429 | 3430 | 3431 | 3432 | 3433 | 3434 | 3435 | 3436 | 3437 | 3438 | 343¢
D70 | 3440 | 3441 | 3442 | 3443 | 3444 | 3445 | 3446 | 3447 | 3448 | 3449 | 3450 | 3451 | 3452 | 3453 | 3454 | 345¢
D80 | 3456 | 3457 | 3458 | 3459 | 3460 | 3461 | 3462 | 3463 | 3464 | 3465 | 3466 | 3467 | 3468 | 3469 | 3470 | 347
D90 | 3472 | 3473 | 3474 | 3475 | 3476 | 3477 | 3478 | 3479 | 3480 | 3481 | 3482 | 3483 | 3484 | 3485 | 3486 | 348
DAO | 3488 | 3489 | 3490 | 3491 | 3492 | 3493 | 3494 | 3495 | 3496 | 3497 | 3498 | 3499 | 3500 | 3501 | 3502 | 350:
DBO | 3504 | 3505 | 3506 | 3507 | 3508 | 3509 | 3510 | 3511 | 3512 | 3513 | 3514 | 3515 | 3516 | 3517 | 3518 | 351¢
DCO | 3520 | 3521 | 3522 | 3523 | 3524 | 3525 | 3526 | 3527 | 3528 | 3529 | 3530 | 3531 | 3532 | 3533 | 3534 | 353:
DDO | 3536 | 3537 | 3538 | 3539 | 3540 | 3541 | 3542 | 3543 | 3544 | 3545 | 3546 | 3547 | 3548 | 3549 | 3550 | 355]

continues on next page

10.22. Hexadecimal Decimal Integer Conversion 157

Pyntel4004, Release ENV_VERSION

Table 5 — continued from previous page

0 1 2 3 4 5 6 7 8 9 A B C D E F
DEO | 3552 | 3553 | 3554 | 3555 | 3556 | 3557 | 3558 | 3559 | 3560 | 3561 | 3562 | 3563 | 3564 | 3565 | 3566 | 356
DFO | 3568 | 3569 | 3570 | 3571 | 3572 | 3573 | 3574 | 3575 | 3576 | 3577 | 3578 | 3579 | 3580 | 3581 | 3582 | 358&:
EO0 | 3584 | 3585 | 3586 | 3587 | 3588 | 3589 | 3590 | 3591 | 3592 | 3593 | 3594 | 3595 | 3596 | 3597 | 3598 | 359¢
E10 | 3600 | 3601 | 3602 | 3603 | 3604 | 3605 | 3606 | 3607 | 3608 | 3609 | 3610 | 3611 | 3612 | 3613 | 3614 | 361!
E20 | 3616 | 3617 | 3618 | 3619 | 3620 | 3621 | 3622 | 3623 | 3624 | 3625 | 3626 | 3627 | 3628 | 3629 | 3630 | 363!
E30 | 3632 | 3633 | 3634 | 3635 | 3636 | 3637 | 3638 | 3639 | 3640 | 3641 | 3642 | 3643 | 3644 | 3645 | 3646 | 364
E40 | 3648 | 3649 | 3650 | 3651 | 3652 | 3653 | 3654 | 3655 | 3656 | 3657 | 3658 | 3659 | 3660 | 3661 | 3662 | 366:
E50 | 3664 | 3665 | 3666 | 3667 | 3668 | 3669 | 3670 | 3671 | 3672 | 3673 | 3674 | 3675 | 3676 | 3677 | 3678 | 367"
E60 | 3680 | 3681 | 3682 | 3683 | 3684 | 3685 | 3686 | 3687 | 3688 | 3689 | 3690 | 3691 | 3692 | 3693 | 3694 | 369:
E70 | 3696 | 3697 | 3698 | 3699 | 3700 | 3701 | 3702 | 3703 | 3704 | 3705 | 3706 | 3707 | 3708 | 3709 | 3710 | 371
E80 | 3712 | 3713 | 3714 | 3715 | 3716 | 3717 | 3718 | 3719 | 3720 | 3721 | 3722 | 3723 | 3724 | 3725 | 3726 | 372
E90 | 3728 | 3729 | 3730 | 3731 | 3732 | 3733 | 3734 | 3735 | 3736 | 3737 | 3738 | 3739 | 3740 | 3741 | 3742 | 374:
EAO | 3744 | 3745 | 3746 | 3747 | 3748 | 3749 | 3750 | 3751 | 3752 | 3753 | 3754 | 3755 | 3756 | 3757 | 3758 | 375¢
EBO | 3760 | 3761 | 3762 | 3763 | 3764 | 3765 | 3766 | 3767 | 3768 | 3769 | 3770 | 3771 | 3772 | 3773 | 3774 | 377:
ECO | 3776 | 3777 | 3778 | 3779 | 3780 | 3781 | 3782 | 3783 | 3784 | 3785 | 3786 | 3787 | 3788 | 3789 | 3790 | 379!
EDO | 3792 | 3793 | 3794 | 3795 | 3796 | 3797 | 3798 | 3799 | 3800 | 3801 | 3802 | 3803 | 3804 | 3805 | 3806 | 380
EEO | 3808 | 3809 | 3810 | 3811 | 3812 | 3813 | 3814 | 3815 | 3816 | 3817 | 3818 | 3819 | 3820 | 3821 | 3822 | 382:
EFO | 3824 | 3825 | 3826 | 3827 | 3828 | 3829 | 3830 | 3831 | 3832 | 3833 | 3834 | 3835 | 3836 | 3837 | 3838 | 383¢
FOO | 3840 | 3841 | 3842 | 3843 | 3844 | 3845 | 3846 | 3847 | 3848 | 3849 | 3850 | 3851 | 3852 | 3853 | 3854 | 385:
F10 | 3856 | 3857 | 3858 | 3859 | 3860 | 3861 | 3862 | 3863 | 3864 | 3865 | 3866 | 3867 | 3868 | 3869 | 3870 | 387
F20 | 3872 | 3873 | 3874 | 3875 | 3876 | 3877 | 3878 | 3879 | 3880 | 3881 | 3882 | 3883 | 3884 | 3885 | 3886 | 388
F30 | 3888 | 3889 | 3890 | 3891 | 3892 | 3893 | 3894 | 3895 | 3896 | 3897 | 3898 | 3899 | 3900 | 3901 | 3902 | 390:
F40 | 3904 | 3905 | 3906 | 3907 | 3908 | 3909 | 3910 | 3911 | 3912 | 3913 | 3914 | 3915 | 3916 | 3917 | 3918 | 391¢
F50 | 3920 | 3921 | 3922 | 3923 | 3924 | 3925 | 3926 | 3927 | 3928 | 3929 | 3930 | 3931 | 3932 | 3933 | 3934 | 393:
F60 | 3936 | 3937 | 3938 | 3939 | 3940 | 3941 | 3942 | 3943 | 3944 | 3945 | 3946 | 3947 | 3948 | 3949 | 3950 | 395!
F70 | 3952 | 3953 | 3954 | 3955 | 3956 | 3957 | 3958 | 3959 | 3960 | 3961 | 3962 | 3963 | 3964 | 3965 | 3966 | 396
F80 | 3968 | 3969 | 3970 | 3971 | 3972 | 3973 | 3974 | 3975 | 3976 | 3977 | 3978 | 3979 | 3980 | 3981 | 3982 | 398&:
FOO | 3984 | 3985 | 3986 | 3987 | 3988 | 3989 | 3990 | 3991 | 3992 | 3993 | 3994 | 3995 | 3996 | 3997 | 3998 | 399¢
FAQ | 4000 | 4001 | 4002 | 4003 | 4004 | 4005 | 4006 | 4007 | 4008 | 4009 | 4010 | 4011 | 4012 | 4013 | 4014 | 401:
FBO | 4016 | 4017 | 4018 | 4019 | 4020 | 4021 | 4022 | 4023 | 4024 | 4025 | 4026 | 4027 | 4028 | 4029 | 4030 | 403!
FCO | 4032 | 4033 | 4034 | 4035 | 4036 | 4037 | 4038 | 4039 | 4040 | 4041 | 4042 | 4043 | 4044 | 4045 | 4046 | 404
FDO | 4048 | 4049 | 4050 | 4051 | 4052 | 4053 | 4054 | 4055 | 4056 | 4057 | 4058 | 4059 | 4060 | 4061 | 4062 | 406:
FEO | 4064 | 4065 | 4066 | 4067 | 4068 | 4069 | 4070 | 4071 | 4072 | 4073 | 4074 | 4075 | 4076 | 4077 | 4078 | 407
FFO | 4080 | 4081 | 4082 | 4083 | 4084 | 4085 | 4086 | 4087 | 4088 | 4089 | 4090 | 4091 | 4092 | 4093 | 4094 | 409:

10.23 Hexadecimal Arithmetic

158

Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

Table 6: Hexadecimal Addition

5

6

7

8

9

A

02

03

04

05

06

07

08

09

0A

0B

0C

0D

OE

OF

10

03

04

05

06

07

08

09

0A

0B

0C

0D

OE

OF

10

11

04

05

06

07

08

09

0A

0B

0C

0D

OE

OF

10

11

12

05

06

07

08

09

0A

0B

0C

0D

OE

OF

10

11

12

13

06

07

08

09

0A

0B

0C

0D

OE

OF

10

11

12

13

4

07

08

09

0A

0B

0C

0D

OE

OF

10

11

12

13

14

15

08

09

0A

0B

0C

0D

OE

OF

10

11

12

13

14

15

16

09

0A

0B

0C

0D

OE

OF

10

11

12

13

14

15

16

17

0A

0B

0C

0D

OE

OF

10

11

12

13

14

15

16

17

18

0B

0C

0D

OE

OF

10

11

12

13

14

15

16

17

18

19

0C

0D

OE

OF

10

11

12

13

14

15

16

17

18

19

1A

0D

OE

OF

10

11

12

13

14

15

16

17

18

19

1A

1B

OE

OF

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

OF

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

es|les|Ew iR =l S = s BN R R E S S S K =}

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

Table 7: Hexadecimal Multiplication

5

6

7

8

9

A

B

04

06

08

0A

0C

OE

10

12

14

16

18

1A

1C

1E

06

09

0C

OF

12

15

18

1B

1E

21

24

27

2A

2D

08

0C

10

14

18

1C

20

24

28

2C

30

34

38

3C

0A

OF

14

19

1E

23

28

2D

32

37

3C

41

46

4B

0C

12

18

1E

24

2A

30

36

3C

42

48

4E

54

5A

OE

15

1C

23

2A

31

38

3F

46

4D

54

5B

62

69

10

18

20

28

30

38

40

48

50

58

60

68

70

78

12

1B

24

2D

36

3F

48

51

S5A

63

6C

75

7E

87

14

1E

28

32

3C

46

50

5A

64

6E

78

82

8C

96

16

21

2C

37

42

4D

58

63

6E

79

84

8F

9A

A5

18

24

30

3C

48

54

60

6C

78

84

90

9C

A8

B4

1A

27

34

41

4E

5B

68

75

82

8F

9C

A9

B6

C3

1C

2A

38

46

54

62

70

7E

8C

9A

A8

B6

C4

D2

i m| Ol A @ | o] o 2| | u| K|

1E

2D

3C

4B

5A

69

78

87

96

A5

B4

C3

D2

El

10.24 Pseudo Instructions

10.24. Pseudo Instructions

159

Pyntel4004, Release ENV_VERSION

10.24.1 Equate

The “equate” pseudo instruction is indicated by the character = (equals sign) written in the code field of an assembler
statement. No executable object code is generated by the pseudo instruction. It acts merely to provide the assembler
with information to be used subsequently while generating object code.

Label Code Operand
Sym = Exp
- e

Reguirred symbol Reguired expression

Description:

The symbol Sym is assigned the value Exp by the assembler. Whenever the symbol Sym is encountered subsequently
by the assembler, this value will be used.

The statements

czZ = 10
JCN CZ ADDR

are equivalent to the statement

JCN 10 ADDR

The statements

DAT = 5
LDM DAT

will load the value 5 into the accumulator

10.24.2 Origin

Two forms of the instruction are acceptable:

Form 1 Form 2
Label Code Operand Label Code Operand
= Exp = Exp
- -
Blank label field Required expression Required expression

As shown above, the equals sign may appear in the “label” or the “code” field.

160 Chapter 10. MCS-4 Assembly Language Programming Manual

Pyntel4004, Release ENV_VERSION

Description:

The assembler’s location counter is set to the value of ‘Exp’. The next machine instruction or data byte generated will
be assembled at address ‘Exp’.

Label Code Operand

= 0
JUN LO
= 512
LO, LDM 7

The JUN instruction will be assembled in locations 0 and 1 of ROM or program RAM. The location counter is then
set to 512, causing the LDM instruction to be assembled at location 512, the first location on the second memory page.
The JUN will therefore cause a jump to location 512.

Note: The pseudo instruction also makes it possible to assemble constant data values into a program. For a description
of how to do this, !!!! see Section 3.2.2 !!!!

There are two pseudo instructions which recognised by the assembler:

Pseudo Instruction | Description
Equate Assign a label to an expression.
Origin Determine where the next instruction will be located.

10.24. Pseudo Instructions 161

Pyntel4004, Release ENV_VERSION

162 Chapter 10. MCS-4 Assembly Language Programming Manual

CHAPTER
ELEVEN

INTEL 4004 OP-CODES

Table 1: Intel 4004 processor Op-Codes

Instruction Mnemonic | 1st byte 2nd byte Modifiers
No Operation NOP 00000000

Jump Conditional JCN 0001CCCC | AAAAAAAA | C A
Fetch Immediate FIM 0010RRRO | DDDDDDDD | RP,D
Send Register Control SRC 0010RRR1 RP
Fetch Indirect FIN 0011RRRO RP
Jump Indirect JIN 0011RRR1 RP
Jump Unconditional JUN 0100AAAA | AAAAAAAA | A
Jump to Subroutine SRC 0101AAAA | AAAAAAAA | A
Increment INC 0110RRRR R
Increment and Skip 1S7 0111RRRR | AAAAAAAA | R, A
Add ADD 1000RRRR R
Subtract SUB 1001RRRR R
Load LD 1010RRRR R
Exchange XCH 1011RRRR R
Branch Back and Load BBL 1100DDDD D
Load Immediate LDM 1101DDDD D
Write Main Memory WRM 11100000

Write RAM Port WMP 11100001

Write Program RAM WPM 11100011

Write ROM Port WRR 11100010

Write Status Char 0 WRO 11100100

Write Status Char 1 WRI 11100101

Write Status Char 2 WR2 11100110

Write Status Char 3 WR3 11100111

Subtract Main Memory SBM 11101000

Read Main Memory RDM 11101001

Read ROM Port RDR 11101010

Add Main Memory ADM 11101011

Read Status Char 0 RDO 11101100

Read Status Char 1 RDI 11101101

Read Status Char 2 RD2 11101110

Read Status Char 3 RD3 11101111

Clear Both CLB 11110000

Clear Carry CLC 11110001

Increment Accumulator IAC 11110010

Complement Carry cMcC 11110011

continues on next page

163

Pyntel4004, Release ENV_VERSION

Table 1 - continued from previous page

Instruction Mnemonic | 1st byte 2nd byte Modifiers
Complement Accumulator CMA 11110100
Rotate Left RAL 11110101
Rotate Right RAR 11110110
Transfer Carry and Clear ee 11110111
Decrement Accumulator DAC 11111000
Transfer Carry Subtract CSs 11111001
Set Carry STC 11111010
Decimal Adjust Accumulator | DAA 11111011
Keyboard Process KBP 11111100
Designate Command Line DCL 11111101

Note: Modifiers
e A = Address
* C = Condition
e D =Data
* R = Register
e RP = Register Pair

164 Chapter 11. Intel 4004 Op-Codes

CHAPTER
TWELVE

THE ASCII TABLE

The 4004 uses a seven-bit ASCII code, which is the normal 8 bit ASCII code with the parity (high order) bit always

reset.

Table 1: ASCII table

Graphic or Control ASCII (Hexadecimal)
NULL 00
SOM 01
EOA 02
EOM 03
EOT 04
WRU 05
RU 06
BELL 07
FE 08
H.Tab 09
Line Feed 0A
0B
V. Tab
Form 0C
Return 0D
SO OE
S1 OF
DCO 10
X-On 11
Tape Aux. On 12
X-Off 13
Tape Aux. Off 14
Error 15
Sync 16
LEM 17
SO 18
S1 19
S2 1A
83 1B
S4 1C
S5 1D

continues on next page

165

Pyntel4004, Release ENV_VERSION

Table 1 - continued from previous page

Graphic or Control

ASCII (Hexadecimal)

S6

1E

S7

IF

ACK

7C

Alt. Mode

7D

Rubout

TF

21

22

23

24

25

26

27

28

%[~

29

2A

+

2B

2C

2D

2E

2F

3A

3B

3C

3D

3E

3F

5B

5C

i~V |Al]

5D

SE

SF

®

40

=X
=
)
=
~

20

30

31

32

33

34

35

36

37

38

39

41

42

43

Ol Al | 3| o] o] | | n| K| L] —| o

44

continues on next page

166

Chapter 12. The ASCII Table

Pyntel4004, Release ENV_VERSION

Table 1 - continued from previous page

Graphic or Control ASCII (Hexadecimal)

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

57

58

59

NI <[X = <|C| P3| mO|9O|Z| 2T R = —| =| Q| ™|«

5A

167

Pyntel4004, Release ENV_VERSION

168 Chapter 12. The ASCII Table

CHAPTER
THIRTEEN

INDICES AND TABLES

* genindex
* modindex

¢ search

169

	Intel 4004 Chip History
	MCS-4
	Busicom 141-PF

	The Intel 4001 Chip
	The Intel 4002 Chip
	The Intel 4003 Chip
	The Intel 4004 Chip
	Instruction Set Format
	Machine instructions
	Input/Output, RAM, and Accumulator Group instructions

	MCS-4 System Interconnections
	Chip Packaging and characteristics
	MCS-4 chipset hardware characteristics
	4001 Hardware Characteristics
	4002 Hardware Characteristics
	4003 Hardware Characteristics
	4004 Hardware Characteristics

	Overview of Pyntel4004
	Error Messages
	Errors
	Configuration Files

	MCS-4 Assembly Language Programming Manual
	Acknowledgements
	Glossary of Terms
	Introduction
	Computer Organization
	Working (Index) Registers
	Accumulator
	Memories
	Program Random Access Memory (PRAM)
	Data Random Access Memory (RAM)
	Read-Only Memory (ROM)

	The Stack
	Writing An Address To The Stack
	Reading An Address From The Stack

	Input and Output
	Computer Program representation in Memory
	Memory Addressing
	Direct Addressing
	Same Page Addressing
	Indirect Addressing
	Immediate Addressing
	Program RAM Addressing
	Data RAM Addressing
	Subroutines and use of the Stack for Addressing

	Carry Bit
	The 4004 Instruction Set
	How Assembly Language is Used
	Statement Mnemonics
	Label Field
	Code Field
	Operand Field
	Comment Field

	Data Statements
	Constant Data
	Instruction Summary
	Index Register Instructions
	FIN
	INC

	Index Register To Accumulator Instructions
	ADD
	SUB
	LD
	XCH

	Accumulator Instructions
	CLB
	CLC
	IAC
	CMC
	CMA
	RAL
	RAR
	TCC
	DAC
	TCS
	STC
	DAA
	KBP

	Immediate Instructions
	FIM
	LDM

	Transfer Of Control Instructions
	JUN
	JIN
	JCN
	ISZ

	Subroutine Linkage Instructions
	JMS
	BBL

	Nop Instructions
	NOP

	Memory Selection Instructions
	SRC
	DCL

	Io And Ram Instructions
	WRM
	WMP
	WRR
	WPM
	WRn
	RDM
	RDR
	RDn
	ADM
	SBM

	Instruction Machine Codes
	Programming Techniques
	Crossing Page Boundaries
	Subroutines
	Branch Table Pseudosubroutines
	Logical Operations
	Logical AND
	Logical OR
	Logical XOR

	Multi-Digit Addition
	Multi-Digit Subtraction
	Decimal Addition
	Decimal Subtraction
	Floating Point Numbers

	Powers Of Two
	Powers Of Sixteen
	Powers Of 10 16
	Hexadecimal Decimal Integer Conversion
	Hexadecimal Arithmetic
	Pseudo Instructions
	Equate
	Origin

	Intel 4004 Op-Codes
	The ASCII Table
	Indices and tables

